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Chapter 1. Development of a Kalman Filter Approach on an 

Isolated Intersection 

1.1. Introduction 

Real-time traffic estimation has received increased attention following the introduction of advanced 

technologies such as GPS units in vehicles. For instance, researchers have developed models to estimate 

the state of on-road traditional vehicles from known smart vehicle data. Smart vehicles are defined as 

vehicles that can exchange information, such as instantaneous speed, position, and acceleration, with other 

vehicles. This is generally referred to as vehicle-to-vehicle, or V2V, communication. These smart vehicles 

can also exchange information with road infrastructure, which is referred to as vehicle-to-infrastructure, or 

V2I, communication. However, there are currently a limited number of smart vehicles on the road and thus 

estimation becomes a crucial tool for obtaining a full picture of the traffic state. 

This chapter employs real-time connected vehicle (CV) data to estimate one of the most important variables 

of signalized links: traffic density. Traffic density is defined as the number of vehicles per unit length along 

a given roadway segment (Roess, Prassas, and McShane 2011). Knowing the number of vehicles on a 

specific roadway segment is crucial to traffic management applications. These estimation outcomes are 

considered as an input to traffic signal controllers, leading to improved intersection performance as a result 

of reduced traffic delays, vehicle crashes, and vehicle emissions. 

Previous studies have addressed this research problem using different traffic data sources to achieve the 

vehicle count estimation. Such sources have included traditional loop detectors (Vigos, Papageorgiou, and 

Wang 2008; Ghosh and Knapp 1978; Kurkjian et al. 1980; Bhouri et al. 1989), camera systems (Beucher, 

Blosseville, and Lenoir 1988), or fusion data (Anand, Vanajakshi, and Subramanian 2011; Anand, 

Ramadurai, and Vanajakshi 2014; van Erp, Knoop, and Hoogendoorn 2017; Qiu et al. 2010; Shahrbabaki 

et al. 2018), which combines two different sources of data, such as loop detectors with camera system, 

camera with GPS data, etc. The aforementioned detection techniques suffer from poor detection accuracy 

and are not cost-effective due to high installation fees and maintenance costs. More accurate data, such as 

data collected using the most recent technologies (i.e., CV data) are needed. 

A loop detector can capture traffic state changes only around its location (stationary detection) and thus 

cannot address the research problem of estimating traffic density. Instead, two loop detectors, located at the 

entrance and exit of the traffic link, have generally been used to achieve the research goal after applying 

the traffic flow continuity equation. However, the noise in the extracted loop detector data leads to some 

errors in the estimation, an issue which is noted in the literature (Anand, Ramadurai, and Vanajakshi 2014; 

Vigos, Papageorgiou, and Wang 2008). To address the noise, the literature suggests using an additional 

source of data. (Vigos, Papageorgiou, and Wang 2008) used an additional loop detector in the middle of 

the tested link to reduce noise. However, the cost of implementing this model in the field is high, as it 

requires at least three loop detectors.  

The Kalman filtering (KF) technique can be employed as a lower cost method (Kalman 1960) to estimate 

the number of vehicles. In a study by Anand et al., KF was combined with a video detection system and 

GPS data to estimate the traffic density (Anand, Ramadurai, and Vanajakshi 2014); the vehicle GPS data 

supplied the model with GPS-equipped vehicles’ travel times. This approach is similar to the one presented 

in this chapter, but differs in two significant ways: 1) we only use CV data, and 2) we treat the estimation 
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interval time as a variable rather than keeping it constant (the estimation interval time was 60 s in (Anand, 

Ramadurai, and Vanajakshi 2014)). (van Erp, Knoop, and Hoogendoorn 2017) used data fusion to estimate 

the number of vehicles along an on-ramp link. They employed traffic count data from loop detectors and 

aggregated speeds from floating car data provided by Google, and set a 300-s fixed interval for updates. 

Several studies have utilized KF to improve the estimation of various traffic variables, such as speed (Ye, 

Zhang, and Middleton 2006; Guo, Xia, and Smith 2009), travel time (Lee, Park, and Yun 2013; Chu, Oh, 

and Recker 2005), and traffic flow (Wang and Papageorgiou 2005). An unscented KF using single loop 

detectors (Ye, Zhang, and Middleton 2006) with a nonlinear state-space equation was able to improve speed 

estimates. Another study employed a linear KF technique to estimate speed, relying on the relationship 

between the flow-occupancy ratio and vehicle speed (Guo, Xia, and Smith 2009), yielding acceptable speed 

estimates for congested traffic conditions. A cumulative travel-time responsive real-time intersection 

control within a CVenvironment was also developed using the KF technique (Lee, Park, and Yun 2013). In 

that study, the authors recommended having levels of market penetration (LMP) of at least 30% in order 

to realize the algorithm’s benefits. In summary, KF has proven to provide accurate estimates. 

The proposed KF approach extends the state of the art in vehicle count estimates by making four major 

contributions:  

1. The estimation approach relies solely on CV data. The approach was evaluated considering 

different CV LMPs ranging from 10% to 90% in increments of 10%.  

2. The approach, unlike past applications, uses a variable estimation interval. Using a fixed estimation 

interval leads to inaccurate estimates, especially at low LMPs. Treating the estimation interval as a 

variable leads to an improved estimation technique. In this work, we defined the estimation interval 

as once exactly 𝑛 CVs exit the link. 

3. The chapter evaluates the impact of the signal control method (a fixed-time plan and an adaptive 

phase split optimizer) on the estimation accuracy. 

4. The chapter investigates the sensitivity of the proposed estimation approach to vehicle length by 

introducing trucks into the traffic stream.  

1.2. Estimation Approach   

1.2.1. Define the Estimation Interval Time 

This new approach improves the estimation accuracy, especially for low LMPs, as shown later in the Results 

section. The proposed approach defines the estimation interval time as the time when an exact number of 

CVs (n) exit the link. This ensures that sample of CVs remains the same in each estimation interval. For 

instance, if the LMP is low (e.g., 10%) and the estimation interval time is fixed and short (e.g., 20 s), there 

is no guarantee that CVs will be present on the link during the predefined short fixed-time interval, thus 

making the estimation inefficient and inaccurate. Accordingly, low LMPs require long intervals (e.g., 300 

s). In contrast, links with high LMPs can use short fixed intervals (e.g., 20 s). However, the LMP is not a 

predefined factor and thus we cannot change the estimation interval time accordingly. A flexible approach 

is needed to overcome this issue and make the estimation more accurate and effective. The approach 

proposed in this work is a major contribution to traffic estimation, as it introduces the use of variable 

estimation periods to produce an efficient and convenient way of determining estimation interval periods. 

For the purpose of this chapter, the sample size is set to equal five CVs (n = 5) after testing different values 

(i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).   
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1.2.2. Estimation Approach Formulation 

This section formulates an approach that estimates the total number of vehicles along signalized intersection 

links. The proposed estimation approach employs KF, using the state and measurement equations. The state 

equation utilizes the traffic flow continuity equation as defined in Equation (2), while the measurement 

equation is derived based on the hydrodynamic relation of traffic flow as defined in Equation (4). Equation 

(2) defines the number of vehicles by continuously adding the difference in the number of vehicles entering 

and exiting the link to the previously computed cumulative number of vehicles. This integral results in an 

accumulation of error that requires fixing, and thus requires the measurement equation.  

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (2) 

where 𝑁(𝑡) is the number of vehicles traversing the link at time 𝑡, 𝑁(𝑡 − Δ𝑡) is the number of vehicles 

traversing the link in the previous time interval, and 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 are the CV flows entering and exiting the 

link between (𝑡 − Δ𝑡) and 𝑡, respectively. 𝜌 is the LMP of CVs, defined as the ratio of the number of CVs 

(𝑁𝐶𝑉) to the total number of vehicles (𝑁𝑡𝑜𝑡𝑎𝑙), shown in Equation (3). For instance, if 𝜌 is 0.1 and the 

number of CVs is 2, then the expected total number of vehicles is 20.  

 𝜌 = 𝑁𝐶𝑉/𝑁𝑡𝑜𝑡𝑎𝑙 (3) 

Equation (4) describes the hydrodynamic relationship between the macroscopic traffic stream parameters 

(flow, density, and space-mean speed).  

 𝑞 = 𝑘𝑢 (4) 

where 𝑞 is the traffic flow (vehicles per unit time), 𝑘 is the traffic stream density (vehicles per unit distance), 

and 𝑢 is the space-mean speed (distance per unit time) shown in Equation (5).  

 𝑢 = 𝐷/𝑇𝑇 (5) 

where 𝐷 is the link length and 𝑇𝑇 is the average vehicle travel time. Since CVs can share their instantaneous 

locations every 𝛥t, the travel time of each CV can be computed for any road section. Thus, the CV travel 

time is used in the measurement equation, using Equations (4) and (5). The measurement equation can be 

written as shown in Equation (8):  

 𝑇𝑇(𝑡) = 𝐷  ×   
𝑘(𝑡)

�̅�(𝑡)
 (6) 

 𝑇𝑇(𝑡) =
1

�̅�
 [𝑘(𝑡) × 𝐷] =

1

�̅�(𝑡)
𝑁(𝑡) (7) 

 𝑇𝑇(𝑡) =   𝐻  (𝑡) × 𝑁(𝑡) (8) 

where �̅� is the average traffic flow entering and exiting the link, and 𝐻(𝑡) is a transition vector that converts 

the vehicle counts to travel times and is the inverse of the average flow (i.e., the first term of Equation (7)), 

as shown in Equation (9).  

 𝐻(𝑡) =
1

�̅�(𝑡)
=

2  ×𝜌

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 (9) 
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Note that the value of 𝜌 in Equations (2) and (9) plays a major role in delivering accurate estimation 

outcomes. The proposed estimation approach (KF) equations are shown below: 

 �̂�
−

(𝑡) = �̂�
+

(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (10) 

  �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�
−

(𝑡) (11) 

  �̂�
−

(𝑡) =   �̂�
+

(𝑡 − 1) (12) 

  𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅]−1 (13) 

  �̂�
+

(𝑡) = �̂�
−

(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) −   �̂�𝑇  (𝑡)] (14) 

  �̂�
+

(𝑡) = �̂�
−

(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)] (15) 

where �̂�
−

 is the a priori estimate of the vehicle counts calculated using the measurement prior to instant t, 

and �̂�
−

 is the a priori estimate of the covariance error at instant 𝑡. The Kalman gain (𝐺) is computed using 

Equation (13). The 𝑅 variable is the covariance error of the measurements. The posterior state estimate 

(�̂�
+

) and the posterior error covariance estimate (�̂�
+

) are updated as shown in Equations (14) and (15), 

considering the CVs’ travel time measurements. 

1.2.3. Define the LMP Rate (𝝆) 

This work tests the estimation approach using a predefined fixed 𝜌 value over all the estimation intervals. 

For instance, the 𝜌 value would be 10% for the entire evaluation if the scenario of 10% LMP is tested. The 

𝜌 values here are defined based on historic data. The 𝜌 value is an important variable in the proposed 

estimation approach, as it scales up the CV observations to compute the total number of vehicles. The 

predefined 𝜌 value is computed as the arithmetic mean of all 𝜌 value observations. For instance, Figure 1.1 

shows the actual 𝜌 values (blue lines) versus the predefined 𝜌 value (red line 𝜌 = 20%), which represents 

error in the approach estimating the 𝜌 values. However, the KF can handle this error, as will be 

demonstrated later in the Results section. 
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Figure 1.1 Actual LMP variations along the estimation steps. 

1.3. Results and Discussion 

This section presents the experimental setup (Section 1.3.1) and the experimental results (Section 1.3.2) of 

applying the proposed approach on an isolated intersection. 

1.3.1. Experimental Setup 

The proposed approach was tested on an intersection with four approaches comprised of three lanes each 

located in the heart of downtown Toronto (El-Tantawy and Abdulhai 2010), as shown in Figure 1.2. The 

traffic origin-destination (O-D) demand matrix, provided in Table 1.1, represents the highest total demand 

approaching the intersection during the afternoon rush hour (PM Peak) for the year 2005. 

 
Figure 1.2 Simulated intersection. 
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Table 1.1 O-D demand matrix. 

Zone # 2 4 6 8 Total 

1 1,223 - 134 121 1,478 

3 - 844 86 278 1,208 

5 88 71 721 - 880 

7 188 100 - 806 1,094 

Total 1,499 1,015 941 1,205 4,660 

The simulations were conducted using the following parameter values: speed at capacity = 60 (km/h), 

free-flow speed = 80 (km/h), jam density = 160 (veh/km/lane), saturation flow rate = 1,900 (veh/h/

lane). The four-legged intersection’s phasing scheme is shown in Figure 1.3. In this chapter, two signal 

operational approaches were conducted in order to achieve a more comprehensive analysis: a fixed-time 

traffic signal plan and an adaptive phase split optimizer (phase split). The fixed plan was computed using 

the Webster method (Daganzo and Daganzo 1997), with yellow and all-red times set at 3 s. The optimized 

effective green times for the four phases were 17 s, 13 s, 8 s, and 9 s. The phase split was optimized every 

120 s. The optimization here allocates green time on the basis of the link’s volume/saturation flow ratios 

according to the Canadian capacity guide and the highway capacity manual (Teply 1985). 

 
Figure 1.3 Four phasing scheme. 

The accuracy of the proposed KF estimator was tested using the INTEGRATION microscopic traffic 

assignment and simulation software (Van Aerde and Rakha 2007) on an isolated intersection. The accuracy 

of the proposed estimation approach was evaluated based on the root mean square error (RMSE) and the 

relative root mean square error (RRMSE), as shown in Equations (16) and (17), respectively. 

 𝑅𝑀𝑆𝐸(𝑣𝑒ℎ)  =  √∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/𝑆 (16) 

 𝑅𝑅𝑀𝑆𝐸(%)  =  100 √𝑆 ∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/ ∑𝑆

𝑠=1 𝑁(𝑆) (17) 

where 𝑁(𝑠) represents the actual vehicle count, �̂�
+

(𝑠) represents the estimated vehicle count values, and 

𝑆 is the total number of estimations. The simulation starts with an initial estimate of (�̂�
+

(0) = 5 veh) as 

in (Vigos, Papageorgiou, and Wang 2008), an initial posterior estimate error of (�̂�
+

(0) = 5), and 

measurement error covariance of (𝑅 = 5). 

1.3.2. Experimental Results 

This section compares the performance of the proposed estimation approach using two estimation interval 

times: a fixed estimation interval (i.e., 60 and 120 s) and the proposed variable estimation interval 

approach. Recall that the variable estimation interval time is defined when a certain number of CVs (e.g. 

5 veh) reach the end of the link (i.e., the traffic signal stop bar; Section 1.3.2.1). Section 1.3.2.2 describes 

the effect of the signal timing plan on the estimation results. Section 1.3.2.3 describes the impact of heavy 

trucks on the estimation accuracy.   
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1.3.2.1. Variable vs. Fixed Estimation Time Interval 

Previous research has considered fixed estimation intervals (e.g., 30 s). This is an appropriate approach if 

data from all vehicles are available and can be used (LMP of 100%). However, this condition is impossible 

to obtain when CV data are used. Consequently, the use of variable interval time steps is crucial for 

obtaining high estimation accuracy and avoiding the absence of CV data in any estimation interval. 

This section illustrates the benefits of using variable time steps as opposed to a constant value. Table 1.2 

presents the estimation efficiency using fixed and variable time steps in the eastbound (EB) approach. The 

fixed intervals are considered to be the same as traffic cycle lengths (i.e., 60 and 120 s). Moreover, different 

LMPs were considered to provide a comprehensive comparison. It is clear that the proposed strategy of 

using variable time steps significantly improves the estimation accuracy results and always ensures that the 

same amount of information is present for every time step (five CVs). It is clear that the estimation approach 

with fixed intervals is not applicable, as the scenario for 10% LMP shows; this is due to the absence of 

observed CVs in most time intervals. Longer estimation intervals are required when LMPs are low (e.g., 

200 s) to ensure that some CVs are on the link, and thus available information is employed in the KF. In 

contrast, shorter estimation intervals are utilized when LMPs are high (e.g., 30 s). The strategy proposed 

herein ensures flexibility of the estimation interval times. 

Table 1.2 EB RRMSE of fixed and variable estimation time interval. 

LMP (%) 
RRMSE (%) 

Fixed (Δ𝑡 = 60 s) Fixed (Δ𝑡 = 120 s) Proposed Approach 

10 Not a Number 48 41 

20 45 42 39 

30 44 39 35 

40 41 36 31 

50 39 35 27 

60 37 36 25 

70 36 34 23 

80 34 34 21 

90 34 33 20 

 

1.3.2.2. Fixed vs. Optimized Green Traffic Signal Timing 

This section studies the impact of allocated green signal timing on the estimation accuracy using a fixed 

plan (green times for all traffic signal phases are predefined and remain fixed) and an adaptive phase split 

optimizer. The total number of vehicles along the tested links were estimated considering different LMPs 

(10% to 90%). A Monte Carlo simulation was conducted to create 100 random CV samples from the entire 

data set for each scenario. This section presents the estimation results of the intersection links: EB (Table 

1.3), westbound (WB, Table 1.4), northbound (NB, Table 1.5), and southbound (SB, Table 1.6). 

The results show that the algorithm produces more accurate estimations for the fixed-time plan for the 

minor approaches (NB, SB). In contrast, the estimation accuracy improves with optimization for the high-

demand approaches (EB and WB). The phase split optimizer positively impacts approaches with high traffic 

demand levels, as more green times are allocated, and thus the estimation polling interval is shorter (more 

vehicles are expected to traverse the intersection). In addition, the results show that the estimation accuracy 

increases as the LMP increases, as the CVs supply more data. For example, if the entire data set contains 

1,000 vehicles (CVs and traditional), and the LMP on the link is equal to 10%, then the number of CVs is 
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100. On the other hand, if the LMP is equal to 90%, the number of CVs is 900. In conclusion, having more 

information significantly improves estimation accuracy. 

Table 1.3 EB RRMSE and RMSE using fixed and phase split plans. 

LMP (%) 
 Fixed Plan   Phase Split  

RRMSE (%) RMSE (veh) RRMSE (%) RMSE (veh)  

10 41  4.4  39  4.5  

20 39  4.1  37  4.2  

30 35  3.8  33  3.9  

40 31  3.3  31  3.5  

50 27   3.0 27  3.1  

60 25  2.7  24  2.8  

70 23   2.4  21  2.4  

80 21  2.2  18  2.1  

90 20  2.2   15  1.7 

Table 1.4 WB RRMSE and RMSE using fixed and phase split plans. 

LMP (%) 
 Fixed Plan   Phase Split  

RRMSE (%) RMSE (veh) RRMSE (%) RMSE (veh)  

10 48   4.5  39 4.6  

20 44  4.1  36  4.2  

30 40  3.7  33  4.0  

40 38  3.5  31  3.7  

50 38  3.5  28  3.4  

60 37  3.3  26  3.1  

70 37   3.3 24   2.8  

80 33  3.0  22   2.6  

90  27  2.5 21  2.6  

Table 1.5 NB RRMSE and RMSE using fixed and phase split plans. 

LMP (%) 
 Fixed Plan   Phase Split  

RRMSE (%) RMSE (veh) RRMSE (%) RMSE (veh)  

10 25  4.4  36  5.2  

20 25  4.4  33  4.6  

30 23  4.1  29  4.2  

40 23  3.9  29  4.1  

50 22  3.7  28  3.9  

60 20  3.5  26  3.7  

70 19  3.3  25  3.5  

80 19  3.3  23  3.3  

90 17  3.0  23  3.3  
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Table 1.6 SB RRMSE and RMSE for fixed and phase split plans. 

LMP (%) 
 Fixed Plan   Phase Split  

RRMSE (%) RMSE (veh) RRMSE (%) RMSE (veh)  

10 29  3.8  45  4.6  

20 29  3.7  43  4.4  

30 26  3.3  36  3.8  

40 25  3.2  32  3.3  

50 22  2.8  29   3.0  

60 20   2.6 26   2.9  

70 19   2.5 24   2.5  

80 19  2.4  22  2.2  

90 18  2.3  22  2.2  

The proposed approach addresses the research goal appropriately, producing reasonable error values. Vigos 

et al. considered their model with up to a 27.5% RRMSE using three loop detector measurements (Vigos, 

Papageorgiou, and Wang 2008). Our approach used no loop detectors and low LMPs, and still produced 

RRMSE values close to Vigos et al.’s model, which used an LMP of 100% and the three aforementioned 

loop detectors. 

1.3.2.3. Impact of Heavy Trucks 

This section investigates the sensitivity of the proposed estimation approach to vehicle length. Trucks with 

4 times the normal vehicle length were introduced to the EB base scenario on all movements. Two different 

percentages were used to define the number of trucks on the tested links: 5% and 10% of the entire data 

set. Table 1.7 illustrates the impact of trucks on estimation accuracy. In the presence of trucks, the maximum 

link accommodation was less compared to the base scenario. As these results show, trucks reduce estimation 

accuracy by increasing bias in our approach. This finding is in line with Vigos et al.’s conclusion (Vigos, 

Papageorgiou, and Wang 2008). 

Table 1.7 RRMSE in scenarios with no trucks, 5%, and 10% trucks. 

LMP (%) Base Scenario 5% Trucks 10% Trucks 

10 41  43  49  

20 39   42 46  

30 35  39   41  

40 31  34   36  

50 27  29   31  

60  25 26   27  

70  23  24  24  

80 21   25  22  

90  20  25 21  

 

1.4. Summary and Conclusions 

This chapter proposes a novel approach for estimating the number of vehicles approaching a traffic signal 

using CV data only. The approach uses a variable estimation interval rather than the traditional fixed 

interval. Specifically, the duration of the interval is dynamically computed when a predefined sample size 

(𝑛) exits the link. This improves the estimation accuracy, especially for low LMPs, and makes the proposed 

estimation approach flexible. The estimation approach uses the known KF technique to achieve the research 

goal. The proposed KF estimator was employed to test the model’s accuracy on signalized multi-lane roads. 

The results showed that the proposed KF addressed the research goal by producing reasonable errors, even 
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at low LMPs. The results indicated, as would be expected, that estimation errors decrease as the LMP 

increases. In addition, the approach was evaluated considering two traffic signal timing scenarios: a fixed-

time plan and an adaptive phase split optimizer. The results demonstrated that the approach works better 

for the fixed plan at lower traffic demand levels. Alternatively, the approach works better for the adaptive 

traffic signal controller for high approach traffic demand levels. This was a result of extending the green 

times for the higher traffic demand approaches, which produced shorter estimation intervals, as 𝑛 CVs 

traversed the link in shorter time periods. Finally, the chapter investigated the sensitivity of the KF’s 

accuracy when adding some trucks to the traffic flow. Specifically, the chapter tested for 5% and 10% 

trucks of the original demand. The estimation accuracy was found to decrease as the percentage of trucks 

increased.
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Chapter 2. Development of Adaptive Kalman and Neural Kalman 

Filtering Approaches 

2.1. Introduction 

Real-time traffic state estimates have grown increasingly important following the introduction of recent 

advanced technologies such as CVs. CVs aim to improve road safety by potentially reducing human errors, 

mitigating traffic congestion levels by offering alternative routes, and reducing on-road emissions and fuel 

consumption (Zmud et al. 2017). Nowadays, conducting research with limited probe vehicle data (e.g., 

CVs) is a challenge, especially when no additional data sources are provided. Hence, past research has 

utilized CV data in conjunction with existing detection systems to enhance proposed traffic models, despite 

the limitation that fixed detection techniques (e.g., loop detectors) always have some noise in their data 

(Anand, Ramadurai, and Vanajakshi 2014; Anand, Vanajakshi, and Subramanian 2011; Badillo et al. 2012). 

A CV is defined as a vehicle that provides real-time information, such as instantaneous position and speed. 

Several benefits of using CV data have been recognized; for example, the high quality of the data compared 

with existing data sources (e.g., cameras and loop detectors), and the ability for data to be collected at any 

location inside the network, thus offering a clear picture about traffic behavior at any time. Therefore, 

transportation agencies are putting effort into facilitating the use of CV data. 

Limited studies have used CV-only data to estimate the state of on-road traditional vehicles (Aljamal, 

Abdelghaffar, and Rakha 2019b), such as traffic travel time, traffic density, traffic speed, and traffic 

volume. The real-time estimation of traffic density is important to achieving better traffic operations 

management in urban areas. This chapter aims to estimate the total number of vehicles on signalized links 

using only CV data. The estimate outcomes can be provided to traffic signal controllers to optimally 

determine the allocation of green time for each traffic signal phase (Abdelghaffar, Yang, and Rakha 2017; 

Abdelghaffar and Rakha 2019), leading to better intersection performance measures such as intersection 

delays and vehicle crashes (Rakha and Van Aerde 1995; Abdelghaffar, Yang, and Rakha 2018). One 

concern with using CVs is measuring their LMP. The LMP is defined as the ratio of the total number of 

CVs to the total number of vehicles. Providing accurate LMP estimates improves the estimation accuracy 

of the vehicle counts (Aljamal, Abdelghaffar, and Rakha 2019b, 2020b). Therefore, in this chapter, a 

machine-learning technique is developed to provide reliable LMP estimates. 

2.2. Related Work 

Different statistical tools have been used to estimate the total number of vehicles on arterial roads and 

freeways, such as the KF (Kalman 1960), Bayesian statistics (Press and Shigemasu 1989), and particle filter 

(Del Moral 1996) (Aljamal, Abdelghaffar, and Rakha 2020a) approaches. The literature shows the benefits 

of using the KF technique in addressing different aspects of the traffic estimation problem. The KF has 

been used to estimate the traffic travel time, traffic speed, and traffic density. Different detection techniques 

have been employed to estimate the number of vehicles, such as loop detectors, camera systems, and probe 

data. Two loop detectors, one at the entrance and the other at the exit of the link, are utilized to measure the 

total number of arrivals and departures, then the number of vehicles is simply obtained by applying the flow 

continuity equation (Roess, Prassas, and McShane 2011). In one study, a robust KF model with at least 

three loop detectors on the tested link was employed to estimate the number of vehicles on the link in 

(Vigos, Papageorgiou, and Wang 2008). The study derived the KF state equation from the flow continuity 

equation, while the measurement equation was derived from the relationship of the detector time-occupancy 
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and space-occupancy; however, the cost of implementing such an algorithm in the field is high given the 

number of sensors needed. Another study employed the KF to estimate the number of vehicles on multi-

section freeways. The state equation was derived from the flow continuity equation, while the measurement 

equation was derived from the hydrodynamic relationship between traffic speed and density (Gazis and Liu 

2003). Loop detectors were used in addition to speed sensors in the middle of the tested section. However, 

the proposed algorithm is hard to employ in the field due to the high cost of implementation. A video record, 

another detection technique, was used to estimate the traffic density for signalized links (Ajitha, Vanajakshi, 

and Subramanian 2013). In that study, the authors used the space-mean speed rather than the traffic flow in 

the state equation due to high errors accompanied with sensor failures. Their argument takes into account 

that the space-mean speed is taken as an average quantity while the traffic flow is a cumulative quantity. 

They also demonstrated the importance of having knowledge about the system noise characteristics to 

improve the performance of the KF model. Consequently, an adaptive Kalman filter (AKF) was developed 

to enable real-time estimates of statistical parameters of the system noise rather than using predefined values 

for the entire simulation (as assumed in the traditional KF approach). 

As illustrated in the literature, stationary sensors, such as loop detectors and camera systems, suffer from 

poor detection accuracy and have high installation and maintenance costs. Advanced detection techniques 

such as CV data have proven to be more accurate without the need to install additional hardware. 

Consequently, recent studies have developed several traffic estimation models using fusion data 

(combination of two different data sources) to estimate the number of vehicles with the aim of achieving 

better accuracy than using only one source of data. In many of the works using fusion data, the KF technique 

was employed for estimating traffic density. One study achieved accurate estimated traffic density results 

using the traffic flow values measured from a video detection system and the travel time obtained from 

vehicles equipped with GPS devices (Anand, Vanajakshi, and Subramanian 2011). The proposed estimation 

approach in this study differs in two significant ways from the proposed AKF approach, namely only CV 

data are used with a variable time interval rather than a fixed value (the updating time interval was 1 minute 

in (Anand, Vanajakshi, and Subramanian 2011)), and the proposed estimation approach uses the AKF to 

allow for real-time estimates of statistical parameters of the state and measurement noise. 

Reviewing the literature, the KF model has proven its ability to address estimation research problems for 

different traffic applications. However, it is hard to implement in real-world applications due to the 

difficulty of estimating the statistical characteristics of the system noise (mean and variance). Consequently, 

researchers have developed the AKF to solve this issue and make field implementation possible. Chu et al. 

proposed an AKF approach to estimate freeway travel time using both loop detectors and CV data (Chu, 

Oh, and Recker 2005). They presented the estimation method for noise statistic parameters that was 

proposed in (Myers and Tapley 1976), which is known for its simplicity in handling errors and its fast 

processing time. Hence, in this chapter, the estimation of the statistical parameters uses the same estimation 

procedure as in Chu et al.’s study. It should be noted that the main difference between the proposed 

estimation approach and Chu et al.’s approach is that our approach uses only CV data. 

In a recent study, the KF approach was proposed to estimate the number of vehicles on signalized links 

using only CV data (Aljamal, Abdelghaffar, and Rakha 2019b). The KF state equation was based on the 

traffic flow continuity equation and thus one value of CV LMP (𝜌), for the entire link, was used to scale up 

the CV measurements to reflect the total flow in the second term of the flow continuity equation as presented 

in Equation (18). It was found that using two LMP values (at the entrance and the exit of the link) produces 
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more accurate vehicle count estimates, especially when dealing with low LMPs, as described later in 

Section 2.4. In Equation (18), 𝑁(𝑡) is the number of vehicles traversing the link at time (𝑡), Δ𝑡 is the variable 

duration of the updating time interval, 𝑁(𝑡 − Δ𝑡) is the number of vehicles traversing the link in the 

previous interval, 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 are the CV flows entering and exiting the link between (𝑡 − Δ𝑡) and (𝑡), 

respectively, and 𝜌 is the LMP of CVs.  

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (18) 

Machine learning has proven its ability to provide accurate estimates for different traffic characteristics 

(Fulari, Vanajakshi, and Subramanian 2017; Antoniou and Koutsopoulos 2006; Khan, Dey, and Chowdhury 

2017; Wassantachat et al. 2009; Jahangiri, Rakha, and Dingus 2015; Sekuła et al. 2018). Traffic speed and 

density have been estimated using an artificial neural network (ANN) model (Fulari, Vanajakshi, and 

Subramanian 2017). Video and Bluetooth data were used to build the ANN model. The traffic flow data 

were manually extracted from the video records, while the speed data were constructed from the collected 

Bluetooth travel time data. The ANN model is able to address the research problem if a good quantity of 

training data is accessible. Another study conducted several machine learning techniques such as k-means 

clustering, k-nearest neighbor classification, and locally weighted regression to estimate traffic speed 

(Antoniou and Koutsopoulos 2006) using archived data of speeds, counts, and densities. They found that 

machine learning models can improve the accuracy of speed estimation. Khan et al. (Khan, Dey, and 

Chowdhury 2017) used artificial intelligence to classify the level of service in a freeway segment based on 

traffic density values. They used loop detectors and CV data to develop support vector machine and k-

nearest neighbor classification. Results indicated higher accuracy from the support vector machine 

algorithm than the k-nearest neighbor classification algorithm. Estimating hourly traffic volumes between 

sensors was addressed using an ANN model in the Maryland highway network (Sekuła et al. 2018), 

deploying both CVs and automatic traffic recording station data to construct the ANN model. A comparison 

was also made between linear regression, k-nearest neighbor, support vector machine with linear kernel, 

random forest, and ANN models, concluding that the ANN model performed the best. The proposed 

approach produced 24% more accurate estimates than current volume profiles. 

In this chapter, an AKF approach is applied to estimate real-time vehicle counts along signalized links using 

only CV data. The study then considers the recommendation of Aljamal et al.’s study (Aljamal, 

Abdelghaffar, and Rakha 2020b) by using two LMP values at the entrance and the exit of the tested link. 

To achieve this task, an ANN approach was developed to provide real-time estimates of the LMP values to 

improve the accuracy of the proposed AKF approach. After that, the chapter develops the new AKFNN 

approach after combining the AKF with the developed ANN approach. This chapter extends the state of 

the art in vehicle count estimates by making four major contributions: 

1. This chapter tests the proposed AKF approach using only CV data. The approach was evaluated 

considering different CV LMPs ranging from 10% to 90% in increments of 10%.  

2. The chapter develops an ANN approach to estimate the LMP of CVs at the exit of the link to 

reflect the total vehicle departures.  

3. The chapter tests the developed AKFNN approach by using a fusion of CV and single loop 

detector data. A comparison between the traditional KF, AKF, and AKFNN approaches is 

presented.  
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4. The chapter examines the impact of the initial conditions on the AKF estimation approach. Three 

initial condition parameters are tested: the initial vehicle count estimate, the initial mean estimate 

of the state noise errors, and the a priori initial covariance of the state system.  

This chapter is organized as follows. Section 2.3 describes the development of the simulation data. Section 

2.4 describes the development of the KF, AKF, and AKFNN estimation approaches. Section 2.5 discusses 

the results of the estimation approaches. Section 2.6 provides the conclusions of the chapter. 

2.3. Development of Simulation Data 

This chapter relies on the INTEGRATION traffic simulation model (Van Aerde and Rakha 2007) to 

validate and test the accuracy of the proposed approaches. The INTEGRATION software has been 

extensively validated and demonstrated to replicate empirical observations (Dion, Rakha, and Kang 2004; 

Rakha, Kang, and Dion 2001; Chamberlayne, Rakha, and Bish 2012; Rakha, Pasumarthy, and Adjerid 

2004; Aljamal et al. 2018). Specifically, INTEGRATION was used to create synthetic data for conditions 

not observed in the field to quantify the sensitivity of the proposed method to the link length and traffic 

demand level. The selected tested link is located in downtown Blacksburg, Virginia, with an approximate 

length of 102 m based on ArcGis software, and connects two signalized intersections. The link 

characteristics were calibrated to local conditions using typical values, which included a free-flow speed of 

40 (km/h), a speed at capacity of 32 (km/h), a jam density of 160 (veh/km/lane), and a base saturation flow 

rate of 2,100 (veh/h/lane), which resulted in a roadway capacity of 700 (veh/h) given the cycle length and 

green times of the traffic signal. The traffic signal cycle length is 75 s and it has four phases with the 

following displayed green times: 5, 25, 5, and 28 s. The tested link here is assigned with a displayed green 

time of 25 s. These values were consistent with what was coded in the field. 

The INTEGRATION simulation model was used to ease the generation of CV data as real CV data are not 

easy to access. For each LMP, a total of 50 scenarios were generated with different random seeds as 

conducted in (Khan, Dey, and Chowdhury 2017). Forty-nine scenarios were used to train and validate the 

proposed ANN approach, and scenario number 50 was considered the testing data set. The INTEGRATION 

model generates a “time-space” file which provides some information about the CVs during their trips for 

every second. The time-space file records the instantaneous position, speed, and spacing for each CV. In 

addition to that, a loop detector is installed at the entrance of the tested link to create a detector output file 

which provides some data about the simulation behavior such as speed, traffic volume, and occupancy at 

the detection location. 

2.4. Estimation Approaches 

This section first summarizes some crucial points regarding estimating the vehicle count as discussed in 

Chapter 3. In addition, this section describes the proposed AKF estimation approach for estimating the 

vehicle count along signalized link approaches, and demonstrates the difference of the state-of-the-art KF 

approach in Aljamal, Abdelghaffar, and Rakha (2019b) and the new proposed AKF approach. Finally, an 

ANN approach is developed to provide estimates of the CV LMPs to be used in the proposed AKF approach 

equations to attain higher accuracy. Two vehicle count estimation approaches are described in this section: 

(1) the AKF, which uses only CV data; and (2) the AKFNN, which fuses CV and single loop detector data. 

The single loop detector data were mainly used to develop the ANN approach. 
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2.4.1. Summary of the Developed KF Approach 

In a previous study (Aljamal, Abdelghaffar, and Rakha 2019b), the authors developed a KF approach to 

produce reliable vehicle count estimates using only CV data. In that study, the authors introduced a novel 

variable estimation time interval as opposed to the traditional fixed time interval. The estimation time 

interval was defined as the time when exactly 𝑛 CVs traversed the tested link. It was proven that the variable 

time interval, compared to a fixed time interval (e.g., 20 s), led to improved estimation accuracy. An 

illustrative example shows the benefits of using the variable time interval. If the approach’s LMP is 10%, 

the number of CVs will obviously be low. If we treat the problem using a fixed estimation interval, then 

the probability of observing zero CVs within an interval will be high for short estimation time intervals, 

making the estimation inefficient and inaccurate. Accordingly, low LMPs require long intervals (e.g., 300 

s) to ensure that at least one CV is on the approach. In contrast, approaches with high LMPs can use short 

estimation intervals (e.g., 20 s). Consequently, treating the estimation time interval as a variable produces 

an efficient and convenient way of determining the duration of the estimation period. 

One concern about the KF approach is the use of predefined fixed values of the mean and variance of the 

KF state and measurement errors. Applying the KF in real-world problems is limited since the statistical 

parameters are assumed to be known (Chu, Oh, and Recker 2005). The mean and variance entities are 

known as variable rather than fixed values. To produce a flexible model, this chapter employs the AKF to 

provide real-time estimates of the statistical parameters of the KF state and measurement errors as described 

in the following section. 

2.4.2. Adaptive Kalman Filter (AKF) 

The traditional KF is utilized with predefined error values of the state and measurement noise; these error 

values remain constant for the entire simulation. However, these values are hard to obtain in the field and 

they are always changing with time. Hence, an AKF was developed to overcome this issue and to 

dynamically estimate the error values in the state and measurement estimates. The AKF is comprised of 

two equations: (a) state equation and (b) measurement equation. The state equation is derived from the 

traffic flow continuity equation as defined in Equation (19). The state equation computes the number of 

vehicles by continuously adding the difference in the number of vehicles entering and exiting the section 

to the previously computed cumulative number of vehicles traveling along the section. This integral results 

in an accumulation error which requires fixing, and thus the measurement equation is needed. In Equation 

(19), the 𝜌 value can be observed from historical data.  

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (19) 

The state equation produces accurate results if the scaled traffic flows (𝑞𝑖𝑛/𝜌𝑖𝑛 and 𝑞𝑜𝑢𝑡/𝜌
𝑜𝑢𝑡

) are accurate, 

as shown in Section 2.5. The total counts can be extracted from traditional loop detectors or video detection 

systems. We should note here that the 𝜌 value in Equation (19) plays a major role in delivering accurate 

outcomes. 𝜌 is defined as the ratio of the number of CVs (𝑁𝐶𝑉) to the total number of vehicles (𝑁𝑡𝑜𝑡𝑎𝑙), as 

shown in Equation (20). For instance, if 𝜌 equals 0.1, and the number of CVs is 5, then the expected total 

number of vehicles is 50.  

 𝜌 = 𝑁𝐶𝑉/𝑁𝑡𝑜𝑡𝑎𝑙 (20) 

Equation (21) describes the hydrodynamic relationship between the macroscopic traffic stream parameters 

(flow, density, and space-mean speed),  

 𝑞 = 𝑘𝑢𝑠 (21) 
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where 𝑞 is the traffic flow (vehicles per unit time), 𝑘 is the traffic stream density (vehicles per unit distance), 

and 𝑢𝑠 is the space-mean speed (distance per unit time). The 𝑢𝑠 can be represented as shown in Equation 

(22),  

 𝑢𝑠 = 𝐷/𝑇𝑇 (22) 

where 𝐷 is the link length and 𝑇𝑇 is the average vehicle travel time. Since CVs can share their instantaneous 

locations every 𝛥t, the travel time of each CV can be computed for any road section. Thus, the CV travel 

time is used in the measurement equation, using Equations (21) and (22). The measurement equation can 

be written as shown in Equation (25):  

 𝑇𝑇(𝑡) = 𝐷  ×   
𝑘(𝑡)

�̅�(𝑡)
 (23) 

 𝑇𝑇(𝑡) =
1

�̅�
[𝑘(𝑡) × 𝐷] =

1

�̅�(𝑡)
𝑁(𝑡) (24) 

 𝑇𝑇(𝑡) =   𝐻  (𝑡) × 𝑁(𝑡) (25) 

where �̅� is the average traffic flow entering and exiting the link, and 𝐻(𝑡) is a transition vector that converts 

the vehicle counts to travel times, and is the inverse of the average flow (i.e., the first term of Equation 

(24)), as shown in Equation (26).  

 𝐻(𝑡) =
1

�̅�(𝑡)
=

2×𝜌

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 (26) 

The system state and measurement equations can be written as in Equations (27) and (28), considering the 

error (noise). The term 𝑢(𝑡) is the given inputs for the system. The vector 𝐻(𝑡) is used to convert the vehicle 

counts to travel times. The vector 𝑤(𝑡 − Δ𝑡) is the state noise and is assumed to be Gaussian noise with the 

mean of 𝑚(𝑡) and variance of 𝑀(𝑡). The measurement noise v(𝑡) is assumed to be Gaussian noise with the 

mean of 𝑟(𝑡) and variance of 𝑅(𝑡).  

 State Equation:         𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) + 𝑢(𝑡) + 𝑤(𝑡 − Δ𝑡) (27) 

                                𝑢(𝑡) =
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] 

 Measurement Equation: 𝑇𝑇(𝑡) =   𝐻  (𝑡) × 𝑁(𝑡) + 𝑣(𝑡) (28) 

                                 𝐻(𝑡) =
1

�̅�(𝑡)
=

2×𝜌

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 

The proposed AKF estimation approach can be solved using the following equations:  

 �̂�
−

(𝑡) = �̂�
+

(𝑡 − Δ𝑡) + 𝑢(𝑡) + 𝑚(𝑡 − Δ𝑡) (29) 

 �̂�
−

(𝑡) =   �̂�
+

(𝑡 − Δ𝑡) + 𝑀(𝑡 − Δ𝑡) (30) 

 𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅(𝑡)]−1 (31) 

 �̂�
+

(𝑡) = �̂�
−

(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) − 𝐻(𝑡)�̂�
−

(𝑡) − 𝑟(𝑡)] (32) 

 �̂�
+

(𝑡) = �̂�
−

(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)] (33) 
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where �̂�
−

 is the a priori estimate of the vehicle counts calculated using the measurement prior to instant t, 

and �̂�
−

 is the a priori estimate of the covariance error at instant 𝑡. The Kalman gain (𝐺) is demonstrated in 

Equation (31). The posterior state estimate (�̂�
+

) and the posterior error covariance estimate (�̂�
+

) are 

updated as shown in Equations (32) and (33), considering the CV travel time measurements. In the next 

section, the estimation steps for the noise statistical parameters (𝑚, 𝑀, 𝑟, 𝑅) are described.  

2.4.2.1. Online Estimation of Noise Statistics 

An online estimate is conducted to optimally find the errors in the state and the measurement variables to 

make the KF more efficient and applicable in real-world applications. As pointed out in the literature, the 

traditional KF assumes predefined errors in the system, which is not the case in real applications. A set of 

unknown noise statistical parameters, (𝑚, 𝑀, 𝑟, 𝑅), needs to be estimated at every estimation step. The 

online estimate procedure follows the same procedure presented in Chu, Oh, and Recker (2005). 

The mean (𝑚) and variance (𝑀) of the state noise are shown in Equations (34) and (35), respectively.  

 𝑚 =
1

𝑛
∑𝑛

𝑡=1   𝑚(𝑡),    where   𝑚(𝑡) = �̂�+(𝑡) − �̂�+(𝑡 − Δ𝑡) − 𝑢(𝑡) (34) 

 𝑀 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑚(𝑡) − 𝑚). (𝑚(𝑡) − 𝑚)𝑇 − (
𝑛−1

𝑛
)�̂�+(𝑡 − Δ𝑡) − �̂�+(𝑡)] (35) 

where 𝑚(𝑡) is the state noise at time 𝑡, the first term of Equation (35) is the covariance of w at time 𝑡, and 

n is the number of state noise samples. 

The mean (𝑟) and variance (𝑅) of the measurement noise are shown in Equations (36) and (37), respectively.  

 𝑟 =
1

𝑛
∑𝑛

𝑡=1 𝑟(𝑡),    where  𝑟(𝑡) = 𝑇𝑇(𝑡) − 𝐻(𝑡) �̂�−(𝑡) (36) 

 𝑅 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑟(𝑡) − 𝑟). (𝑟(𝑡) − 𝑟)𝑇 − (
𝑛−1

𝑛
)𝐻(𝑡)�̂�−(𝑡)𝐻𝑇(𝑡)] (37) 

where 𝑅(𝑡) is the observation noise at time 𝑡. The first term of Equation (37) is the covariance of v at time 

𝑡, and n is the number of measurement noise samples. As a summary, the KF and AKF approaches use the 

same equations except for the fact that the AKF estimates the statistical parameters of the noise for every 

estimation step using Equations (34) to (37). 

As found in Chapter 1, providing the system equations real-time estimates of 𝜌
𝑖𝑛

 and 𝜌
𝑜𝑢𝑡

 should improve 

the estimation accuracy. In this chapter, a single loop detector was installed at the entrance of the tested 

link to produce real-time estimates of 𝜌
𝑖𝑛

. In contrast, in the next section, an ANN is developed to obtain 

real-time estimates for the 𝜌
𝑜𝑢𝑡

 values. 

2.4.3. Artificial Neural Network 

ANN is a machine learning technique that aims to recognize relationships between vast amounts of data by 

employing a certain number of neurons in every single hidden layer to achieve better accuracy (Haykin 

2007). The network consists of three main layers: the input layer, the hidden layer, and the output layer. 

This section takes into account the recommendation of using two market penetration rates (at the entrance 

and exit of the link) rather than one market penetration rate along the tested link in the KF equations 

(Aljamal, Abdelghaffar, and Rakha 2019b). Accordingly, the state equation and the 𝐻 vector in the 
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measurement equation are revised as presented in Equations (38) and (39). 𝜌
𝑖𝑛

 and 𝜌
𝑜𝑢𝑡

 are the CV LMP at 

the entrance and the exit of the link, respectively. 

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) + Δ𝑡[
𝑞𝑖𝑛(𝑡)

𝜌𝑖𝑛(𝑡)
−

𝑞𝑜𝑢𝑡(𝑡)

𝜌𝑜𝑢𝑡(𝑡)
] (38) 

  𝐻(𝑡) =
1

�̅�(𝑡)
=

2

𝑞𝑖𝑛(𝑡)

𝜌𝑖𝑛(𝑡)
+

𝑞𝑜𝑢𝑡(𝑡)

𝜌𝑜𝑢𝑡(𝑡)

 (39) 

A single loop detector was installed at the entrance of the link to measure 𝜌
𝑖𝑛

 and also to use as an input to 

the ANN approach. Accordingly, this chapter develops an ANN approach to estimate 𝜌
𝑜𝑢𝑡

. The tested link 

is shown in Figure 2.1. The next section describes the selected inputs (features) and the output variables of 

the ANN approach. 

 
Figure 2.1 Tested link.   

2.4.3.1. Characteristics of the ANN: Input and Output Variables 

Previous research has used different features to build machine learning models (Fulari, Vanajakshi, and 

Subramanian 2017; Antoniou and Koutsopoulos 2006; Khan, Dey, and Chowdhury 2017; Wassantachat et 

al. 2009). Fusing video and Bluetooth data was used to estimate traffic density and speed. The traffic flow 

was manually extracted from the video records, while the speed data were constructed from the collected 

Bluetooth travel time data (Fulari, Vanajakshi, and Subramanian 2017). Another study relied on archived 

data of traffic speeds, counts, and density to estimate traffic speed (Antoniou and Koutsopoulos 2006). 

Distance headway, number of stops, and speed data were identified as useful features to achieve accurate 

density estimates (Khan, Dey, and Chowdhury 2017). They employed loop detectors and CV data. In a 

recent study, Sekula et al. (Sekuła et al. 2018) used probe and automatic traffic recording station data to 

extract the features of the ANN model. The selected features were the (1) speed of the CVs; (2) weather 

data such as temperature, visibility, precipitation, and weather status; (3) infrastructure data (speed limits, 

number of lanes, class of the road, and type of the road); (4) temporal data such as the day of the week; and 

(5) volume profiles based on historical data. The literature showed that traffic speed is always used as a 

model feature, especially when CV data are used. In contrast, traffic flow is always a feature when stationary 

sensors (e.g., loop detector) are used. 

This research utilizes a fusion of CV and single loop detector data to produce the ANN features. The single 

loop detector was installed at the entrance of the link, and thus 𝜌
𝑖𝑛

 can be computed directly using Equation 

(20). The 𝜌
𝑜𝑢𝑡

 variable is calculated from the ANN (the ANN output). Seven possible inputs (features) were 

considered in the ANN, as defined in Table 2.1. Conducting a feature selection technique to validate the 

importance of each feature for the ANN approach, the number of the model features was dropped to five. 
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It should be noted that the selected inputs can be easily extracted when CVs are on the link. 𝜌
𝑜𝑢𝑡

 can be 

expressed as a function of the selected inputs, as presented in Equation (40). 

 𝜌
𝑜𝑢𝑡

= 𝑓(𝐴𝑡, 𝐴𝑝, 𝑢𝑠, 𝑆1, 𝑆2) (40) 

The 𝜌
𝑜𝑢𝑡

 values vary between 0 and 1; a 0 value means that no CVs were observed at the exit of the link, 

while the value of 1 means that the 𝐷𝐶𝑉 value is the same as the 𝐷𝑡. The selected inputs must be relevant 

to the model output 𝜌
𝑜𝑢𝑡

 to allow the ANN model to build a strong relationship between the model inputs 

and outputs and therefore produce high estimation accuracy. For instance, in our case, the 𝜌
𝑜𝑢𝑡

 value 

decreases as 𝐴𝑡 and 𝐴𝐶𝑉 increase. For instance, a high value of 𝐴𝑡 means that the link is more congested 

and thus the number of departures (𝐷𝑡) is expected to be high. The 𝜌
𝑜𝑢𝑡

 value also decreases with increasing 

speed (𝑆1, 𝑆2, and 𝑢𝑠). The speed is an indicator of the congestion level of the link; for instance, if the speed 

is low, then more vehicles are expected to be on the link, leading to higher values of 𝐷𝑡. 

Table 2.1 Definition of the ANN approach inputs. 

Input Symbol   Definition   Unit  

𝐴𝑡   Total number of arrivals obtained from the single-loop detector   veh  

𝐴𝐶𝑉   Total number of CV arrivals   veh 

𝐷𝐶𝑉   Total number of CV departures   veh 

𝑆1   Average speed for CVs at link entrance   km/hr 

𝑆2   Average speed for CVs at link exit   km/hr 

𝑢𝑠   Space-mean speed for CVs   km/hr 

𝑢𝑡   Time-mean speed for CVs   km/hr  

A single hidden layer with one neuron, with a transfer function of hyperbolic tangent sigmoid, was used to 

build the ANN model as shown in Figure 2.2. The Levenberg-Marquardt (LM) optimization has been 

proven in the literature to outperform the gradient decent and conjugate gradient methods for medium-sized 

problems (Roweis 1996). Furthermore, the LM is considered the fastest back-propagation algorithm and 

thus was implemented in the proposed approach. The weights and biases of the developed ANN approach 

are described below. 𝑤1 depicts the weights between the input layer and the hidden layer, while 𝑤2 

represents the weight between the hidden layer and the output layer. 𝑏1 and 𝑏2 represent the biases at the 

hidden and output layers, respectively. Figure 2.2 describes the proposed AKFNN approach, combining the 

AKF approach with the ANN approach.  

𝑤1 = [0.43    0.19    − 47.28    0.36    − 0.43],   𝑤2 = [1.70],   𝑏1 = [−46.62],   𝑏2 = [0.95] 
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Figure 2.2 Flowchart for adaptive Kalman filter with a neural network (AKFNN) approach. 

2.5. Results 

This section evaluates the performance of the proposed estimation approaches. The first subsection 

evaluates the performance of the AKF approach and then compares the AKF with the KF (Section 2.5.1). 

The second subsection presents the performance of the ANN approach used for estimating the LMP of CVs 

at the exit of the link (𝜌
𝑜𝑢𝑡

) (Section 2.5.2). The third subsection compares the performance of AKF with 

the AKFNN approach (Section 2.5.3). The fourth subsection investigates the sensitivity of the AKF 

estimation approach to the initial conditions (Section 2.5.4). The accuracy of the proposed approaches was 

evaluated based on the RMSE, as shown in Equation (41). The RMSE has been frequently used in the 

literature to measure the difference between the approach estimates and the actual values.  

 𝑅𝑀𝑆𝐸 (𝑣𝑒ℎ)  =  √∑𝑛
𝑡=1 [�̂�+(𝑡) − 𝑁(𝑡)]2/𝑛 (41) 

where �̂�
+

(𝑡) represents the estimated vehicle count values, 𝑁(𝑡) represents the actual vehicle count values, 

and 𝑛 is the total number of estimations. All simulation scenarios start with the following initial conditions: 

an initial vehicle count estimate of zero (�̂�
+

(0) = 0 veh), which is the same value as the actual vehicle 

count, and initial mean and the prior covariance estimates of the state system (𝑚(0) = 2 veh and �̂�
−

(0)= 

75 veh 2) if the LMP scenario is less than or equal 60%, and (𝑚(0) = 9 veh �̂�
−

(0)= 120 veh 2) if the LMP 

scenario is greater than 60%. The proposed approaches were evaluated using different CV LMPs, including 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each scenario, a Monte Carlo simulation was 

conducted to create 300 random samples of CVs from the full data set. 

2.5.1. Comparison of the KF and the AKF Approaches 

This section evaluates the proposed AKF approach with real-time estimates of the error statistical 

parameters for the state and the measurement. This section also compares the proposed AKF with the 

developed KF approach in Aljamal, Abdelghaffar, and Rakha (2019b), as shown in Table 2.2. Results show 

that the AKF outperforms the KF approach in most scenarios except for the scenarios with high LMPs (i.e., 

LMP of 80% and 90%). Results demonstrate the need to provide real-time estimates for the mean and 

variance error values in the state and measurement when dealing with low or medium LMPs. This happened 

due to high error in the fixed 𝜌 value that was used, which then produced high error in the vehicle count 

estimate. The AKF improved the traditional KF vehicle count estimation accuracy by up to 29%. In 

contrast, for high LMPs, the user may proceed with predefined statistical values for the state and 

measurement (mean and variance error values) due to low errors in the vehicle count estimates (low error 
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in the 𝜌 value). In conclusion, a simple KF can be used with high LMPs without the need to change 

statistical noise parameters at every estimation step.  

Table 2.2 RMSE values using KF and AKF approaches. 

     LMP (%) 
 RMSE (veh) 

 KF  AKF  Improvement (%)  

10   6.0   4.3  29  

20   5.6   4.0  28  

30   5.0   3.8  23  

40   4.6   3.6  22  

50   4.1   3.6  11  

60   3.6   3.2  11  

70   3.0   3.0  0  

80   2.3   2.6  -13  

90   1.6   2.0  -25  

  

2.5.2. Developed ANN Approach 

The ANN model was employed to estimate the (𝜌
𝑜𝑢𝑡

) value, which is used to reflect the total number of 

vehicle departures from the given number of CV departures. The data set was divided into 70% for training, 

15% for validation, and 15% for testing. The validation data set is used to measure network generalization 

and to avoid any over fitting problems (Kohavi 1995). The developed ANN performance is shown in Table 

2.3. The mean square error (MSE) is 0.01 and the 𝑅 value is close to 1.0. The 𝑅 value measures the 

correlation between model outputs and desired outputs. A value close to 1.0 means that the model outputs 

are very close to the desired outputs. Figure 2.3 shows the error histogram for the training, validation, and 

testing data and their deviations from the zero error bar. Most of the errors lie around the zero error bar, 

which means that the developed ANN model appropriately addressed the research goal (i.e., estimating 

𝜌
𝑜𝑢𝑡

). Figure 2.4 presents the estimated and actual values for the 𝜌
𝑜𝑢𝑡

 at different LMPs.  

Table 2.3 Developed ANN model performance measures for the training, validation, and testing data set. 

 Data Set   Samples   MSE   R  

Training   346,881   0.0171   0.872  

Validation   74,331   0.0170   0.872  

Testing   74,331   0.0173   0.871  
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Figure 2.3 Error histogram for the training, validation, and testing data set. 

 
Figure 2.4 Actual and estimated values of 𝜌𝑜𝑢𝑡 for different LMP scenarios: (a) 10%, (b) 20%, (c) 30%, 

(d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% LMP. 

2.5.3. Comparison of the AKF and the AKFNN Approaches 

This section demonstrates the impact of using two 𝜌 values rather than using one predefined 𝜌 value. The 

average predefined 𝜌 value is defined as the value for the entire tested link. The average 𝜌 value remains 

constant for the entire simulation for each LMP scenario. For instance, if the scenario of 10% LMP is 

tested, the 𝜌 value in both the state and measurement is treated as a value of 0.1. In this chapter, we proposed 

the use of two 𝜌 values; one at the entrance and one at the exit of the link to reflect the total number of 

arrivals and departures from the given total number of CV arrivals and departures, respectively. 𝜌
𝑖𝑛

 is 

measured directly using the installed loop detector at the entrance of the link. The developed ANN approach 
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is used to estimate the 𝜌
𝑜𝑢𝑡

 values. Then, the 𝜌
𝑖𝑛

 and 𝜌
𝑜𝑢𝑡

 values are utilized in the AKF equations. Recall 

that the AKF approach relies only on CV data, while the AKFNN approach uses a fusion of CV and single 

loop detector data. 

Table 2.4 presents the RMSE values using the AKF and the AKFNN approaches. The results demonstrate 

the benefits of using the AKFNN approach rather than the AKF approach, where the estimation accuracy 

is improved by up to 26%. This finding proves what was recommended by Aljamal et al.’s previous study 

(Aljamal, Abdelghaffar, and Rakha 2020b) to consider two 𝜌 values rather than one value. As a result, the 

proposed AKFNN approach is robust and produces reasonable errors even with low LMPs. For instance, 

the estimated vehicle count values are off by 3.7 veh when the LMP is equal to 10%. Figure 2.5 presents 

the vehicle count estimation for different LMPs using the proposed AKFNN Approach. 

Table 2.4 RMSE values using the AKF and the AKFNN approaches. 

     LMP (%) 
  RMSE (veh) 

AKF AKFNN Improvement (%)  

10  4.3   3.7  13  

20  4.0   3.6  11  

30  3.8   3.5  9  

40  3.6   3.3  8  

50  3.6   2.7  26  

60  3.2   2.4  25  

70  3.0   2.4  20  

80  2.6   2.3  12  

90  2.0   1.8  10  

 
Figure 2.5 Actual and estimated vehicle counts over estimation intervals for different LMP scenarios: (a) 

10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% LMP. 
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2.5.4. Impact of the Initial Conditions on the AKF Approach 

The KF, traditional and adaptive, is sensitive to the initial condition parameters, such as the posterior state 

estimate (𝑁𝑖 = �̂�
+

(0)), the mean of state noise (𝑚𝑖 = 𝑚(0)), and the prior error covariance estimate (𝑃𝑖 = 

�̂�
−

(0)). These parameters are tuned by a trial-and-error technique to find the best initial condition values 

for seeking better KF estimation outcomes. However, in real applications, trial and error is not realistic and 

not easy to achieve. Hence, this section investigates the impact of initial conditions on the accuracy of the 

vehicle count estimation.  

2.5.4.1. Impact of Initial Estimate of the Vehicle Count (𝑵𝒊) 

For the initial estimate of the vehicle count (𝑁𝑖), different values were evaluated (ranging from 0 to 10 in 

increments of 1). In this chapter, remember that all simulation scenarios start with an initial estimate of 

zero (𝑁𝑖 = 0 veh), which is the same value as the actual vehicle count. Figure 2.6a presents the RMSE 

values for different 𝑁𝑖 values for the scenario of 10% LMP. As shown in the figure, the values of 8 and 10 

produce the lowest RMSE. The RMSE value is equal to 4.3 veh when 𝑁𝑖 is equal to 0. In contrast, the 

RMSE value is equal to 3.9 veh when 𝑁𝑖 is equal to 8. As a result, starting the AKF approach with the best 

initial estimate (e.g., 𝑁𝑖 = 8 veh) would reduce the errors and therefore improve the estimation accuracy. 

2.5.4.2. Impact of Initial Mean Estimate of the State System (𝒎𝒊) 

Another critical initial parameter in the AKF approach is 𝑚𝑖. This parameter represents the mean value of 

the noise in the state equation. This chapter tests 16 different 𝑚𝑖 values (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  

11, 12, 13, 14, and 15). Figure 2.6b presents the vehicle count estimation RMSE values for different 𝑚𝑖 

values. The RMSE value is equal to 4.7 veh when the simulation starts with a 0 value of 𝑚𝑖. In contrast, 

the RMSE value is 3.9 veh when the value of 𝑚𝑖 is equal to 11. 

2.5.4.3. Impact of Initial Prior Covariance Estimate of the State System (𝑷𝒊) 

The last parameter tested was the initial prior estimate of error covariance 𝑃𝑖. The error covariance 

parameter describes the accuracy of the state system. For instance, if the covariance value is low, then the 

state outcome is accurate and close to the actual value. As stated in the literature, the initial parameters 

should always be tuned to achieve accurate estimation accuracy. Thirteen different 𝑃𝑖 values were tested 

(i.e., 5, 10, 15, 20, 25, 50, 75, 100, 120, 150, 200, and 250). Figure 2.6c presents the RMSE values using 

different 𝑃𝑖 values. The 𝑃𝑖 value of 150 veh 2 produces the lowest RMSE values. 

 

Figure 2.6 Impact of the initial conditions on the AKF approach: (a) Initial estimate values 𝑁𝑖, (b) Initial 

mean estimate values 𝑚𝑖, and (c) Initial covariance estimate values 𝑃𝑖. 
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The research presented in this chapter evaluates the proposed approaches as they should be in real-world 

applications. Therefore, the trial-and-error technique was avoided since it is not a valid solution in the field. 

However, it was noticed that previous research always tunes the initial parameters to determine the best 

initial conditions when testing their estimation approaches (Anand, Vanajakshi, and Subramanian 2011; 

Anand, Ramadurai, and Vanajakshi 2014; Vigos, Papageorgiou, and Wang 2008). If that is the case, let us 

assume that the proposed AKFNN approach always starts with the best initial value of 𝑃𝑖, which would 

produce less error. Table 2.5 presents the RMSE when considering the trial-and-error technique (Tuned 

AKFNN). The AKFNN and the Tuned AKFNN approaches used the same values of 𝑁𝑖 and 𝑚𝑖, but they 

used different 𝑃𝑖 values. 𝑁𝑖 is assumed to be zero, while 𝑚𝑖 has two values based on the tested scenario: a 

value of 2 veh when low LMP scenarios are tested (LMP <= 60%), and a value of 9 veh with high LMP 

scenarios (LMP > 60%). From the table, tuning the 𝑃𝑖 value significantly improves the estimation accuracy 

for all scenarios (by up to 27%). For instance, at 10% LMP, the estimation error dropped from 3.7 to 3.3 

vehicles. On the other hand, the estimated vehicle count values are off by 2.8 vehicles instead of 3.6 vehicles 

for the scenario of 20% LMP. 

In conclusion, the AKF approach was proven to be very sensitive to the initial conditions (𝑁𝑖, 𝑚𝑖, 𝑃𝑖). 

Hence, starting the simulation with good assumptions of the initial conditions can significantly improve the 

estimation accuracy, as shown in Table 2.5. Finally, Table 2.6 presents the performance of the approaches 

discussed in the chapter.  

Table 2.5 Impact of applying the trial-and-error technique for the initial value of covariance 𝑃𝑖. 

     LMP (%) 
RMSE (veh) 

AKFNN Tuned AKFNN Improvement (%) 

10 3.7 3.3 11 

20 3.6 2.8 22 

30 3.5 2.7 23 

40 3.3 2.4 27 

50 2.7 2.1 22 

60 2.4 2.1 13 

70 2.4 2.1 13 

80 2.3 1.8 22 

90 1.8 1.5 17 

Table 2.6 RMSE values for the KF, the AKF, the AKFNN, and the tuned AKFNN approaches. 

     LMP (%) 
 RMSE (veh) 

 KF AKF  AKFNN  Tuned AKFNN  

10   6.0   4.3  3.7 3.3  

20   5.6   4.0  3.6 2.8  

30   5.0   3.8  3.5 2.7  

40   4.6   3.6  3.3 2.4  

50   4.1   3.6  2.7 2.1  

60   3.6   3.2  2.4 2.1  

70   3.0   3.0  2.4 2.1  

80   2.3   2.6  2.3 1.8  

90   1.6   2.0  1.8 1.5  
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2.6. Summary and Conclusions 

The chapter proposed a novel AKF approach for estimating the number of vehicles on signalized 

approaches using only CV data. An AKF approach was developed to provide real-time estimates of the 

statistical properties (mean and variance) for the state and measurement errors. The state equation is derived 

from the traffic flow continuity equation, while the measurement equation is constructed using the traffic 

hydrodynamic equation. Results show that the proposed AKF approach outperforms the traditional KF 

(improves the estimation accuracy by up to 29%), demonstrating the need to use real-time values of the 

statistical noise parameters in the KF approach. 

Two estimation approaches were presented: (a) the AKF, and (b) the AKFNN. The AKF approach uses 

only CV data assuming a fixed LMP value that is obtained from historical data, while the AKFNN uses a 

fusion of CV and single loop detector data with real-time estimates of the LMP values (𝜌
𝑖𝑛

 and 𝜌
𝑜𝑢𝑡

). In 

this chapter, a robust ANN approach was developed to provide accurate real-time estimates of the 𝜌
𝑜𝑢𝑡

 

values. The selected features of the ANN approach are 𝐴𝑡 (observed from the single loop detector), 𝐴𝐶𝑉, 

𝑢𝑠, 𝑆1, and 𝑆2 (observed from CVs). 

The AKF and the ANN were combined to develop the novel AKFNN approach. Results demonstrate that 

the AKFNN approach significantly improves the vehicle count estimation accuracy since the 𝜌
𝑖𝑛

 and 𝜌
𝑜𝑢𝑡

 

values are estimated better. Subsequently, the chapter compared the AKF with the AKFNN approaches, 

showing that the AKFNN approach outperforms the AKF, enhancing the estimation accuracy by up to 26%. 

Finally, the chapter investigated the impact of the initial conditions (𝑁𝑖, 𝑚𝑖, and 𝑃𝑖) on the AKF 

performance. Results show that the AKF approach is very sensitive to the initial conditions. For instance, 

starting the simulation with an 𝑁𝑖 value of 8 instead of 0 improves the estimation accuracy by 10%. In 

addition, starting the simulation with an 𝑚𝑖 value of 11 instead of 2 enhances the estimation accuracy by 

up to 10%. For the 𝑃𝑖 parameter, an improvement of 7% could occur if the simulation starts with an initial 

value of 150 instead of 75 veh 2. The chapter also tested the accuracy of the AKFNN estimation by 

allowing the 𝑃𝑖 parameter to be tuned (Tuned AKFNN approach), showing that more improvement could 

be achieved. Specifically, the Tuned AKFNN improves the accuracy by up to 27%. In conclusion, both 

approaches (AKF and AKFNN) produce high estimation accuracy when compared with the state-of-the-art 

KF approach.
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Chapter 3. Enhancement of the Kalman Filter Approach Using a 

Bounded 𝝆 in the State-Space Model 

3.1. Introduction 

The number of on-road vehicles has increased rapidly over the past few decades. For example, in the U.S., 

the number of motor vehicles registered from 1990 to 2016 increased by more than 75 million vehicles 

(Statista 2018), leading to serious traffic congestion in many areas. One potential approach to mitigating 

traffic congestion is expanding the current infrastructure by adding new lanes and roadways to 

accommodate growing traffic demands; however, this comes with significant associated costs. A more 

efficient way of solving traffic congestion is improving traffic management strategies by using advanced 

technologies and algorithms. Among the more recent technologies utilized for traffic management are 

Intelligent Transportation Systems (ITSs). ITS applications are developed to enhance transportation system 

efficiency, mobility, and reduce environmental impacts. In general, ITS aims at improving the infrastructure 

side of technology via sensors, communication, controllers, etc. Advanced Traffic Management Systems 

(ATMSs) constitute one ITS approach. ATMSs include advanced traffic signal control systems that 

optimize traffic signal timings in real-time (Rakha and Van Aerde 1995; Rakha 1995). 

Traffic density is defined as the number of vehicles on a given roadway segment divided by the length of 

the segment (Roess, Prassas, and McShane 2011). Knowing the number of vehicles on a specific roadway 

segment is crucial in developing efficient adaptive traffic signal controllers; however, it is difficult to 

measure traffic density directly in the field. Moreover, traffic occupancy measurements from loop detectors 

represent a temporal estimate of the traffic stream density around the measurement location. The research 

described herein attempts to estimate the number of vehicles, both queued and moving, along signalized 

roadway links (e.g., urban roadways) using only CV data. To the authors’ knowledge, this work is the first 

attempt to estimate vehicle counts based solely on CV data. This estimation approach will provide key input 

to real-time traffic signal controllers, leading to a reduction in intersection delays, vehicle emissions, and 

vehicle crashes. 

3.2. Literature Review  

Past research has used different technologies/techniques, such as loop detectors (Ghosh and Knapp 1978; 

Kurkjian et al. 1980; Bhouri et al. 1989; Vigos, Papageorgiou, and Wang 2008), video detection systems 

(Beucher, Blosseville, and Lenoir 1988), or data fusion techniques (Anand, Ramadurai, and Vanajakshi 

2014; Anand, Vanajakshi, and Subramanian 2011; van Erp, Knoop, and Hoogendoorn 2017) (combining 

two different sources of data) to estimate the number of vehicles on signalized links. However, these 

techniques suffer from poor detection accuracy and have high installation costs. Emerging technologies, 

such as CV technology, can provide and share vehicle real-time location and speed data. These sample data 

can be exploited and used to estimate the traffic density without the need to install additional hardware. 

Numerous studies have attempted to estimate vehicle counts. For example, Ghosh and Knoop (Ghosh and 

Knapp 1978) demonstrated that vehicle counts can be improved by dividing the roadway into small 

segments (half-mile) to produce an efficient estimation. Another study used traffic flow and occupancy data 

from two conventional loop detectors to estimate the number of vehicles traveling along a specific road 

segment using the flow continuity equation (Kurkjian et al. 1980). Vigos et al. proposed a robust algorithm 

that requires at least three loop detectors on a roadway segment in order to estimate the number of vehicles 

(Vigos, Papageorgiou, and Wang 2008); however, the cost of implementing such algorithms in the field is 
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high. For example, imagine that the estimation is required for a city like New York, which has almost 

12,460 signalized intersections (DOT 2011). If each intersection has four approaches, it would be necessary 

to install 150,000 detectors in order to make a proper estimate, which is an unreasonable proposition. 

Bhouri et al. proposed a scalar KF in order to estimate the number of vehicles on an on-ramp section, using 

a recorded film to observe the density measurements (Bhouri et al. 1989), utilizing the equation of 

conservation of cars as a state equation. Another study measured vehicle counts by matching vehicle 

signatures recorded by a network of wireless magnetic sensors (Kwong et al. 2010). A video image 

processing algorithm of was deployed by Beucher et al., in which images were first collected from different 

scenes along a 150-m section, and then filters were used to detect the vehicle markers; however, this 

approach is difficult to utilize in the field. 

Recently, data fusion has been widely used to estimate the number of vehicles along certain roadway 

sections, with the aim of achieving better accuracy than using only one source of data. In many of the works 

using data fusion, KF (Kalman 1960) was employed for estimating traffic density. One study achieved 

accurate estimated traffic density results using the traffic flow values measured from a video detection 

system and the travel time obtained from vehicle GPSs (Anand, Vanajakshi, and Subramanian 2011). The 

approach in this chapter is similar to that work in some aspects, but differs in two significant ways: only 

CV data are used and furthermore the updating time interval is considered as a variable rather than a fixed 

value (the updating time interval was 1 minute in (Anand, Vanajakshi, and Subramanian 2011)).  

Van Erp et al. used data fusion to estimate the number of vehicles along an on-ramp segment (van Erp, 

Knoop, and Hoogendoorn 2017). They used traffic flow data from loop detectors and aggregated speeds 

from floating cars, the latter provided by Google, and set a 300-s fixed updating interval. Another study 

used loop detectors and CV data to estimate freeway traffic density (Qiu et al. 2010), relying on IntelliDrive 

technology (vehicle infrastructure integration) at a predefined updating time interval. Anand et al. used 

video and GPS data to estimate the number of vehicles along a roadway segment (Anand, Ramadurai, and 

Vanajakshi 2014). In that study, video captured the traffic flow at the segment’s entrance and exit points, 

while GPS data provided travel time measurements. 

Several researchers have used the KF technique to enhance estimates in various transportation applications, 

such as speed, travel time, and traffic flow. An unscented KF deployed for speed estimation using single 

loop detectors (Ye, Zhang, and Middleton 2006) with a nonlinear state-space equation, was able to improve 

the speed estimates. Another study employed a linear KF technique to estimate speed, relying on the 

relationship between the flow-occupancy ratio and vehicle speed (Guo, Xia, and Smith 2009), yielding 

acceptable speed estimates for congested traffic conditions. A cumulative travel-time responsive (CTR) 

real-time intersection control within a CV environment was also developed using the KF technique (Lee, 

Hernandez, and Stoschek 2012). In that study, the authors recommended having an LMP of at least 30% 

in order to realize the CTR algorithm’s benefits. 

In summary, the existing literature shows the benefits of using the KF technique to reduce errors and address 

different aspects of the traffic state estimation problem. Accordingly, the KF technique was adopted in this 

chapter. One commonality of the aforementioned studies is that they all estimated the number of vehicles 

using one source of data from fixed sensors (e.g., loop detectors) or using fused source data (e.g., video 

with GPS data) utilizing a predefined updating interval. 
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In this chapter, a scalar KF approach was applied to estimate real-time vehicle counts along signalized links 

using both real and simulated traffic data. This estimation technique was applied to a signalized link in 

downtown Blacksburg, Virginia. The proposed approach extends the state of the art in vehicle count 

estimates by making four major contributions:  

1. This chapter defines the estimation interval as a variable rather than a fixed value. The estimation 

time interval is defined as the point at which exactly 𝑛 CVs traversed the tested link. 

2. This chapter relies only on CV data. Different CV LMPs were also tested, and recommendations 

for future research are presented. 

3. This chapter examines the estimation accuracy when adding a single loop detector, and a 

sensitivity analysis is made in terms of the optimum location of the stationary sensor. 

4. This chapter investigates the sensitivity of the proposed estimation model to different factors 

including the length of the link and the level of traffic congestion.  

This chapter is organized as follows: Section 3.3 describes the estimation method and the problem 

formulation. Section 3.4 describes the data collected from downtown Blacksburg, Virginia. Section 3.5 

shows the results of the new proposed model. Section 3.6 presents the conclusions of the chapter. 

3.3. Estimation Approach 

3.3.1. Define the Estimation Interval Time 

Unlike other studies, this work defines the estimation time interval as a variable rather than a fixed value. 

This new approach enhances the estimation at low LMPs, as shown later in the Results section. For example, 

if the link’s LMP is 10%, the number of CVs will obviously be low. If we treat the problem using a fixed 

estimation interval, then the probability of observing zero CVs within an interval will be high for short 

estimation interval durations, making the estimation inefficient and inaccurate. Accordingly, low LMPs 

require long intervals (e.g., 300 s) to ensure that at least one CV is on the link. In contrast, links with high 

LMPs can use short estimation intervals (e.g., 20 s). One of the major contributions of this chapter was to 

address this issue to produce an efficient and convenient way of determining the duration of the estimation 

period. 

For this work, the updating time interval was defined as the time when an exact number of CVs traversed 

the link (i.e., reached the traffic signal stop bar)—reflecting a predefined sample size (𝑛). This new 

approach ensures that the same number of CVs is used for each updating time interval. Thus, using this 

approach, the population confidence interval will be a fixed scaling of the sample confidence interval. This 

approach also ensures that there will be sufficient information about the CVs. Consequently, the average 

travel time (𝑇𝑇) value in Equation (54) will always be observed. 

3.3.2. Formulation 

This section defines the proposed formulation to estimate the total number of vehicles along a signalized 

link. The proposed approach utilizes the KF technique, which is comprised of two equations: (a) a state 

equation and (b) a measurement equation. The state equation is based on the traffic flow continuity equation 

as defined in Equation (42), while the measurement equation is based on the hydrodynamic relation of 

traffic flow given in Equation (44). The KF is a recursive estimation model that continuously repeats the 

state estimations and corrections. Equation (42) computes the number of vehicles by continuously adding 

the difference in the number of vehicles entering and exiting the section to the previously computed 



30 
 

cumulative number of vehicles traveling along the section. This integral results in an accumulation of error 

that requires fixing, and thus the need for the measurement equation.  

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (42) 

Here 𝑁(𝑡) is the number of vehicles traversing the link at time (𝑡), Δ𝑡 is the duration of the variable updating 

time interval, 𝑁(𝑡 − Δ𝑡) is the number of vehicles traversing the link in the previous interval, 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 

are the CV flows entering and exiting the link between (𝑡 − Δ𝑡) and (𝑡), respectively, and 𝜌 is the LMP of 

CVs. The equation above produces accurate results if the scaled traffic flows (𝑞𝑖𝑛/𝜌𝑖𝑛 and 𝑞𝑜𝑢𝑡/𝜌𝑜𝑢𝑡) are 

accurate (May 1990). The total counts can be extracted from traditional loop detectors or video detection 

systems. We should note here that the 𝜌 value in Equation (42) plays a major role in delivering accurate 

outcomes. The 𝜌 is defined as the ratio of the number of CVs (𝑁𝐶𝑉) to the total number of vehicles (𝑁𝑡𝑜𝑡𝑎𝑙), 

as shown in Equation (43). For instance, if 𝜌 is 0.5, and the number of CVs is 5, then the expected total 

number of vehicles is 10.  

 𝜌 = 𝑁𝐶𝑉/𝑁𝑡𝑜𝑡𝑎𝑙 (43) 

Equation (44) describes the hydrodynamic relationship between the macroscopic traffic stream parameters 

(flow, density, and space-mean speed).  

 𝑞 = 𝑘𝑢 (44) 

where 𝑞 is the traffic flow (vehicles per unit time), 𝑘 is the traffic stream density (vehicles per unit distance), 

and 𝑢 is the space-mean speed (distance per unit time). The space-mean speed can be replaced using 

Equation (45).  

 𝑢 = 𝐷/𝑇𝑇 (45) 

where 𝐷 is the link length, and 𝑇𝑇 is the average vehicle travel time. Since CVs can share their instantaneous 

locations every Δ𝑡, the travel time of each CV can be computed for any road section. Thus, the CV travel 

time is used in the measurement equation, as shown in Equations (46), (47), and (48).  

 𝑇𝑇(𝑡) = 𝐷  ×   
𝑘(𝑡)

�̅�(𝑡)
 (46) 

 𝑇𝑇(𝑡) =
1

�̅�(𝑡)
[𝑘(𝑡) × 𝐷] =

1

�̅�(𝑡)
𝑁(𝑡) (47) 

 𝑇𝑇(𝑡) =   𝐻  (𝑡) × 𝑁(𝑡) (48) 

where �̅� is the average traffic flow entering and exiting the link, and 𝐻(𝑡) is a transition vector that converts 

the vehicle counts to the average travel time. 𝐻(𝑡) is the inverse of the average flow (i.e., the first term of 

Equation (47)), as shown in Equation (49).  

 𝐻(𝑡) =
1

�̅�(𝑡)
=

2  ×𝜌

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 (49) 

The proposed estimation approach can be solved using the KF equations, as follows: 

 �̂�−(𝑡) = �̂�+(𝑡 − Δ𝑡) +
Δ𝑡

𝜌
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)] (50) 
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 �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�−(𝑡) (51) 

 �̂�−(𝑡) =   �̂�+(𝑡 − Δ𝑡) (52) 

 𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅]−1 (53) 

 �̂�+(𝑡) = �̂�−(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) −   �̂�𝑇  (𝑡)] (54) 

 �̂�+(𝑡) = �̂�−(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)] (55) 

where �̂�− is the a priori estimate of the vehicle counts calculated using the measurement prior to instant t, 

and �̂�− is the a priori estimate of the covariance error at instant 𝑡. The Kalman gain (𝐺) is computed using 

Equation (53). The 𝑅 variable is the covariance error of the measurements. The posterior state estimate �̂�+ 

and the posterior error covariance estimate �̂�+ are updated using Equations (54) and (55), after considering 

the CV travel time measurements. 

It should be noted here that the 𝜌 value in Equation (50) impacts the estimation accuracy significantly, 

especially for low LMPs (e.g., LMP < 30%) given that it scales the estimated values. For instance, for a 𝜌 

value of 0.1, the second term of Equation (50) is scaled by a factor of 10, which results in large errors in 

the vehicle counts. A real illustrative example using empirical data is described in Table 3.1. This example 

shows the impact of low LMPs in the state equation (i.e., ρ = 0.1). For the first estimation step, the total 

number of arrivals (AT) and departures (DT) within the polling interval are 65 and 60 as displayed in Table 

3.1, whereas the number of CV arrivals (ACV) and departures (DCV) for the same polling interval are 6 and 

5, respectively. The first estimation starts with an erroneous initial vehicle count estimate N̂+(0) = 5 

vehicles while the real number is zero as is in (Vigos, Papageorgiou, and Wang 2008). The actual total 

number of vehicles on the link would then be 5 vehicles (0 + (65 − 60)). Applying Equation (50) would 

produce an estimated total of 15 (5 + (6 − 5)/0.1 = 15). Note that if the ρ value in Equation (50) is 

constrained by a lower bound, it can prevent the state equation from producing such large errors. For the 

same example, if the ρ lower bound in Equation (50) is set to 0.5, the total number of vehicles is estimated 

to be 7 (5 + (6 − 5)/0.5). As can be seen from this example, the absolute error using a lower bound of 0.5 

is 2 vehicles, whereas the absolute error using the estimated total counts is 10 vehicles. Consequently, it is 

much easier for the KF to correct a small error rather than a large error after applying the measurement 

equation. Figure 3.1 compares the vehicle counts using the state equation, Equation (50), with and without 

a lower bound on ρ, along the estimation steps for the 10% LMP scenario. It is clear that having a lower 

bound on ρ in the state equation improves its accuracy by reducing the distance from the actual vehicle 

count line (the green line in Figure 3.1). The reason behind not allowing the market penetration to be very 

small is that (1) we use a single ρ value estimate to approximate the two ρ values (upstream and downstream 

of the link); and (2) if the ρ value is very small, the approximation error is inflated, producing a larger error 

in the estimated total number of vehicles. Consequently, Equation (50) can be rewritten as presented in 

Equation (56). The ρ factor in the state equation becomes the maximum of the historic ρ value and a lower 

bound (ρmin), taken to be 0.5 in the analysis after examining different ρmin values from 0.1 to 0.9 as 

presented in Table 3.2. Note that further work is needed to develop procedures to provide more accurate 

estimates of the two market penetration rates; namely, the one at the entrance of the link and the one at the 

exit of the link.  
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 �̂�−(𝑡) = �̂�+(𝑡 − Δ𝑡) + Δ𝑡 
[𝑞𝑖𝑛(𝑡)−𝑞𝑜𝑢𝑡(𝑡)]

𝑚𝑎𝑥(𝜌,𝜌𝑚𝑖𝑛)
 (56) 

 
Figure 3.1 Impact of applying a lower bound in the state equation estimates. 

Table 3.1 Vehicle count estimation values of using Equations (50) and (56). 

Estimation Step 𝑨𝑪𝑽 𝑫𝑪𝑽 𝑨𝑻 𝑫𝑻 �̂�−( Eq. 50) �̂�− ( Eq. 56) Actual 

1 6 5 65 60 15 7 5 

2 4 5 67 69 5 5 3 

3 6 5 66 62 15 7 7 

4 5 5 64 61 15 7 10 

5 4 5 37 40 5 5 7 

6 5 5 43 40 5 5 10 

7 6 5 79 81 15 7 8 

8 5 5 48 48 15 7 8 

9 5 5 99 98 15 7 9 

10 4 5 26 30 5 5 5 

11 7 5 37 35 25 9 7 

12 4 5 24 22 15 7 9 

13 8 5 22 22 45 13 9 

14 1 5 15 17 5 5 7 

15 5 5 70 71 5 5 6 

16 6 5 45 38 15 7 13 

Table 3.2 RRMSE values using different (𝜌𝑚𝑖𝑛) values in Equation (56). 

LMP (%) 
𝝆𝒎𝒊𝒏  in Equation (56) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

10 48 45 41 40 38 38 38 37 37 

20 43 43 40 39 36 35 34 33 33 

30 39 39 39 38 35 33 33 32 31 

40 36 36 36 36 34 30 28 27 27 

50 32 32 32 32 32 29 27 26 26 

60 28 28 28 28 28 28 26 24 24 

70 25 25 25 25 25 25 25 22 21 

80 20 20 20 20 20 20 20 20 18 

90 14 14 14 14 14 14 14 14 14 

 

3.3.3. Proposed Estimation Approaches 

This section describes two estimation approaches. The first approach uses only CV data with a fixed 𝜌 

along the estimation intervals (e.g., 𝜌 = 20%), while the second approach utilizes fused data (CV and single 

loop detector data), where the single loop detector provides the estimation model with actual 𝜌 values. 
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3.3.3.1. First Approach: CV Data Assuming Fixed LMP (𝝆) 

The 𝜌 value is an important variable in the proposed estimation approach since it scales the CV 

measurements to reflect the total flow. The first estimation approach uses a fixed 𝜌 value in the estimation 

steps, observed from historical data. It should be noted that producing accurate estimates of the actual 𝜌 

values will produce perfect estimation outcomes as long as there are no errors in the data; the 𝜌 values can 

be observed every time interval with the addition of a fixed sensor (e.g., a traditional loop detector or video 

detection system) to measure the total flow. The predefined 𝜌 value in Equations (49) and (50) is computed 

as the arithmetic mean of all 𝜌 observations. For instance, Figure 3.2 shows the actual 𝜌 values versus the 

predefined 𝜌 value as the red line (𝜌 = 20%). This figure clearly shows errors in the 𝜌 value estimate. 

However, the KF reduces the errors produced from the fixed 𝜌 assumption, as shown later in the Results 

section. The varying 𝜌 values that appear in the figure are evidence that the proposed approach works well 

with noisy data. 

 
Figure 3.2 Variation in actual LMP over all the estimation intervals. 

3.3.3.2. Second Approach: Fusion Data with Variable LMP (𝝆) 

This section employs a single loop detector in addition to CV vehicle data to estimate the LMP. The loop 

detector is used to observe the actual total flow and then compute the 𝜌 values in the measurement equation 

for all the estimation times (𝑡). The loop detector produces the total traffic flow, which can then be used to 

compute (𝑁𝑡𝑜𝑡𝑎𝑙) in Equation (43). The new proposed estimation approach uses the same equations in the 

formulation section except that the measurement equation considers the actual 𝜌 values in the 𝐻 vector, as 

shown in Equation (57).  

 𝐻(𝑡) =
2 ×𝜌(𝑡)

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 (57) 

3.4.  Data Collection 

This chapter evaluates the proposed estimation approaches using both empirical and simulated data. This 

section will describe both the data and the link characteristics. The simulated data were used to provide 

additional data to test the KF estimator for varying conditions (e.g., traffic demand levels and link lengths).    

3.4.1. Empirical Data 

Figure 3.3 shows the tested link in downtown Blacksburg, Virginia. The link falls between two traffic 

signals. The two observer locations define the link length, as shown in Figure 3.3. The link length is 

approximately 74 m based on Google Maps, and the speed limit is 25 mi/h (40 km/h). The two observers 
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recorded the time stamp when each vehicle passed. Using the data, it was possible to conduct a Monte Carlo 

simulation to extract a random sample of CVs to compute (𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡) and use them in Equation (56). 

The team collected actual field data for 75 minutes on March 29, 2018, between 4:00 and 5:15 p.m., 

observing a total of 813 vehicles. The full data served as the ground truth values, and thus our estimation 

approach outputs were compared to these actual values. The collected data also included the observed travel 

time between Observer 1 and Observer 2 (from the beginning to the end of the link). The tested link had 

no roadway entrances or exits between the two observers and thus the flow continuity was maintained.  

 

Figure 3.3 Tested link in downtown Blacksburg, VA. (source: Google Maps) 

3.4.2. Simulation Data 

INTEGRATION (Van Aerde and Rakha 2007), a microscopic traffic simulation software, was used to 

validate and test the accuracy of the proposed approach. The INTEGRATION software has been 

extensively validated and demonstrated to replicate empirical observations. Specifically, INTEGRATION 

was used to create synthetic data for conditions not observed in the field to quantify the sensitivity of the 

proposed approach to the link length and traffic demand level. Specifically, a range of link lengths was 

tested (i.e., 74, 150, 200, 300, and 400 m), as shown later in the Results section. The link characteristics 

were calibrated to local conditions using typical values, which included a free-flow speed of 40 km/h, a 

speed-at-capacity of 32 km/h, a jam density of 160 veh/km/lane, and a base saturation flow rate of 1,800 

veh/h/lane, which resulted in a roadway capacity of 855 veh/h given the cycle length and green times of 

the traffic signal. The traffic signal operated at a cycle length of 120 s and a 50:50 phase split. The amber 

and all-red interval was 3 s. These values were consistent with what was coded in the field. 

3.5. Results and Discussion 

The accuracy of the proposed KF approach was tested using real and simulated data. The evaluation of all 

scenarios was based on the RRMSE and the RMSE, shown in Equations (58) and (59), respectively. The 

two measures are frequently used in the literature to compute the difference between the approach estimates 

and the actual values. 

 𝑅𝑅𝑀𝑆𝐸(%)  =  100 √𝑆 ∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/ ∑𝑆

𝑠=1 𝑁(𝑆) (58) 

 𝑅𝑀𝑆𝐸(𝑣𝑒ℎ)  =  √∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/𝑆 (59) 
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where 𝑁(𝑠) represents the actual values, �̂�+(𝑠) represents the estimated vehicle count values, and 𝑆 is the 

total number of estimations. The simulation starts with an erroneous initial estimation �̂�+(0) = 5 veh while 

the real number is zero as in (Vigos, Papageorgiou, and Wang 2008); the initial posterior estimate error 

�̂�+(0) = 5, and the measurement error covariance (𝑅) is assumed to be 5. The proposed approach was 

evaluated using different CV LMPs, including 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. 

3.5.1. Empirical Data 

3.5.1.1. Sample Size Impact on KF Estimator Performance 

In this study, the estimation time interval was defined as the time when a prescribed number of CVs 

traversed the link (vehicles passed the traffic signal stop bar)—representing the desired sample size (𝑛). 

This new approach ensures that the same number of CVs is used every updating estimation time interval. 

First, an optimal sample size (𝑛) is needed in the estimation equations. Different sample size values were 

tested (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10). In the proposed approach, the sample size (𝑛) was used to 

identify the estimation time step, producing a variable estimation time step. Table 3.3 presents the RRMSE 

values for the tested sample sizes, RRMSE values for some sample sizes are close, especially in the values 

between five and eight. Consequently, the sample size (𝑛) can be different depending on the data. In this 

section, the optimal sample size was defined to be five; once the fifth vehicle passed the second observer, 

the 𝑇𝑇 variable (the arithmetic mean travel time for the five vehicles) was updated in Equation (54). 

Table 3.3 RRMSE values for 10 different sample sizes for different LMPs. 

     Sample Size      LMP = 𝟏𝟎%      LMP = 𝟓𝟎%      LMP = 𝟖𝟎%    

1   43   34   19  

2   41   32   19  

3   40   33   20  

4   40   33   25  

5   38   32   20  

6   40   32   20  

7   40   32   20  

8   40   33   20  

9   40   37   22  

10   39   38   24  

 

3.5.1.2. Variable vs. Fixed Estimation Time Interval 

Previous research always considers a constant estimation time step (e.g., 20 s). This is an appropriate 

approach if the entire data set is available (LMP of 100%) and/or the traffic demand is high. However, it 

is impossible to access the entire data set when dealing with CVs. Consequently, a variable estimation time 

step is used rather than a fixed one. 

This section demonstrates the benefits of using variable time steps as opposed to constant values, as is done 

in the literature. Table 3.4 presents the RRMSE values using variable and fixed estimation time steps. The 

proposed variable time step method was compared to the traditional fixed interval method (i.e., 15, 20, 30, 

40, 50, 60, 120, and 240 s), with the results in Table 3.4 showing that low LMPs produce infinite values 

from the H vector in Equation (49) in most fixed intervals. Consequently, the system produces NaN (Not a 

Number) values in Equation (58) due to lack of 𝑇𝑇 data. 
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Table 3.4 RRMSE values using variable and fixed estimation interval time periods. 

Time Interval (s) 
 RRMSE (%) 

   LMP = 20%       LMP = 50%        LMP = 80%     

15   NaN   NaN   NaN  

20   NaN   NaN   NaN  

30   NaN   NaN   91  

40   NaN   NaN   96  

50   NaN   NaN   43  

60   NaN   57   40  

120   63   49   36  

240   59   60   39  

  Proposed Algorithm  

 (variable time interval) 
36 32 20 

Table 3.5 shows the average and maximum time interval for different LMPs. The results demonstrate that 

low LMPs require long intervals (e.g., 300 s) to ensure that some CVs are on the approach. In contrast, 

links with high LMPs use short estimation intervals (e.g., 30 s). The proposed strategy ensures flexibility 

of the estimation intervals. Figure 3.4 shows the relationship between the sample size (𝑛) and the average 

time interval for different LMPs. It should be noted here that as the sample size (𝑛) increases, the time 

interval increases. This approach ensures that a sufficient number of observations are available to estimate 

the traffic stream density within a desired margin of error. However, a smaller sample size can be used 

when faster computations are needed. The user can make the trade-off between the time interval and 

associated error they are willing to accept. In conclusion, the proposed algorithm enhances the estimation 

by reducing the estimation errors and allowing the algorithm to respond more quickly for high LMPs and 

ensuring that sufficient observations are available to achieve the estimations for low LMPs. 
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Table 3.5 Estimation time interval for different LMPs. 

LMP (%)      Avg Time Interval (s)      Max Time Interval (s)   

10   254   450  

20   131   234  

30   86   177  

40   66   123  

50   53   111  

60   43   99  

70   37   101  

80   33   97  

90   29   78  

 
Figure 3.4 Impact of sample size on the average time interval. 

3.5.1.3. 5.1. Impact of Connected Vehicle LMPs 

The number of vehicles along the link was estimated considering different LMPs (i.e., 10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80%, and 90%). A Monte Carlo simulation was conducted to create 100 random 

samples from the collected data for each scenario, creating a random sample of CVs. The proposed approach 

used the optimal sample size obtained in the previous section (𝑛 = 5 veh). The more vehicle information 

available (i.e., the higher the LMP), the shorter the estimation interval and the more estimation steps are 

possible. Figure 3.5 presents the estimation along different LMPs for the empirical data. The RRMSE 

values produced reasonable values even with low LMPs, as shown in Table 3.6. For instance, the estimated 

vehicle count values are off by 2.8 vehicles when the LMP is equal to 10%. On the other hand, the estimated 

vehicle count values are off by 1.0 vehicles when the LMP is equal to 90%. From Table 3.6, it is clear that 

the error increases as the LMP decreases. It should be noted that the total field-collected data was not 

enough to test the KF approach accuracy at low LMPs. Thus, the model’s accuracy was further tested using 

simulated data. 
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Table 3.6 RRMSE and RMSE values for nine scenarios using various LMPs for real data. 

 LMP (%)      RRMSE (%)      RMSE (veh)   

10   38   2.8  

20   36   2.6  

30   35   2.5  

40   34   2.4  

50   32   2.3  

60   28   2.0  

70   25   1.8  

80   20   1.4  

90   14   1.0  

 

   
Figure 3.5 Actual and estimated vehicle counts using real data at different LMP scenarios: (a) 10%, (b) 

20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90%. 

3.5.1.4. Impact of Fusing Connected Vehicle and Single Loop Detector Data 

This section computes the actual 𝜌 in the measurement equation (Equation (57)) using a stationary sensor 

in addition to the CV data. The 𝜌 value is defined as the ratio of the number of CVs to the total number of 

vehicles, as in Equation (43). Table 3.7 shows the RRMSE values using the developed two estimation 

approaches: (1) CV data approach assuming fixed 𝜌 values (“CV approach”), and (2) CV and single loop 

detector data using variable 𝜌 values (“fusion approach”). Different loop detector locations were tested for 

the fusion approach (entrance, middle, and exit) to measure the actual 𝜌 values. Based on the RRMSE 

values, in some cases installing a loop detector in the middle of the tested link would slightly improve the 

model’s accuracy at low LMPs by up to 4%; however, installing a loop detector may not be cost-effective. 

In conclusion, we recommend using data from existing detection sensors (e.g., loop detectors or video 

surveillance) if they already exist on the roads. Otherwise, we recommend using a fixed 𝜌 value that can be 

estimated from historic data rather than the actual 𝜌. 
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Table 3.7 RRMSE values using one loop detector in different locations (entrance, middle, and exit). 

LMP (%) 

  RRMSE (%)  

CV Approach 

(Fixed 𝜌) 

 

 Fusion Approach (Variable 𝜌)  

Entrance Middle Exit 

10   38   37   34   38  

20   36   35   33   36  

30   35   34   32   36  

40   34   34   33   34  

50   32   31   31   32  

60   28   28   28   28  

70   25   25   24   25  

80   20   19   19   20  

90   14   14   12   14  

 

3.5.2. Simulation Data 

The simulation software used the same link characteristics that were observed during the data collection in 

downtown Blacksburg. This section first investigates the sensitivity of the vehicle count estimation 

approach to the link length and to the traffic demand level. Then, the simulated data were used to examine 

the effect of the choice of the 𝜌 value on the estimation accuracy. First, the KF estimation approach is tested 

considering a constant predefined 𝜌 in the model equations (CV approach). Second, the approach accuracy 

is examined using the actual 𝜌 obtained from the installation of a single loop detector (fusion approach). In 

this section, the optimal sample size for simulated data was eight. 

3.5.2.1. Link Length and Traffic Demand Sensitivity Analysis 

First, the simulated data were used to study the sensitivity of the estimation approach to the link length. 

Different link lengths were investigated in addition to the original link length (i.e., 150, 200, 300, and 400 

m). Table 3.8 presents the RRMSE values for different link lengths for different LMPs. The results 

demonstrate that the estimation accuracy increases with an increase in the link length, which is in line with 

Vigos et al.’s conclusion (Vigos, Papageorgiou, and Wang 2008). For the rest of this study, we used a 400-

m link length to ensure that the link accommodates more vehicles. 

Table 3.8 RRMSE values under different link lengths. 

     Link Length      LMP = 20%      LMP = 50%      LMP = 80% 

74   39   37   29  

150   36   30   19  

200   33   26   16  

300   29   22   13  

400   25   21   13  

Second, the impacts of traffic demand level on the estimation approach were then examined, considering 

both under- and over-saturated conditions. Different v/c (flow/capacity) ratios were tested (from 0.1 to 1.1 

at 0.1 increments) as shown in Table 3.9. The original v/c ratio was 0.79 (650/855 = 0.79) based on the 

collected data. In general, RMSE and the RRMSE decrease with the increase of LMP for the same traffic 

demand level. However, the RMSE is expected to increase with increasing traffic demand levels for the 

same LMP, the reason being the increment in the total number of vehicles on the tested link. For instance, 
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at 10% LMP, for the 0.2 v/c, the RRMSE is 59% and the RMSE is 2.0, so we are off by 2.0 out of the 

actual 3.4 vehicles. For a 1.0 v/c ratio, the RRMSE is 24% and the RMSE is 6.5, so we are off by 6.5 

vehicles out of the actual 27 vehicles. In conclusion, the RMSE value can be higher but represents better 

results (in our case the total number of vehicles). The results from the table demonstrate that the estimation 

approach works better as the level of congestion increases (e.g., v/c of 0.9, 1.0, and 1.1). The proposed 

approach therefore demonstrates the KF’s efficiency with over-saturation scenarios (e.g., v/c = 1.1), 

especially for low LMPs, indicating its usefulness within a real-time traffic signal controller. Accordingly, 

a v/c ratio of 1.1 is used in the next section given that real-time traffic signal control is mostly needed during 

congested periods. 

Table 3.9 RRMSE and RMSE values for different v/c ratios. 

LMP (%) 
RRMSE (%), RMSE (veh) 

v/c=0.1 v/c=0.2 v/c=0.3 v/c=0.4 v/c=0.5 v/c=0.6 v/c=0.7 v/c=0.8 v/c=0.9 v/c=1.0 v/c=1.1  

10   75, 0.8   59, 2.0   48, 2.7   43, 3.2   36, 3.4   33, 3.9   34, 4.7   29, 5.3   25, 6.3   24, 6.5   16, 5.1  

20   73, 1.2   58, 1.9   45, 2.5   40, 3.1   34, 3.2   32, 3.7   29, 4.3   27, 5.0   23, 5.9   23, 6.3   14, 4.7  

30   73, 1.2   55, 1.8   44, 2.4   40, 3.0   33, 3.1   29, 3.5   27, 4.0   26, 4.7   23, 5.7   22, 5.8   13, 4.4  

40   73, 1.2   55, 1.8   41, 2.2   36, 2.7   30, 2.9   28, 3.3   26, 3.8   24, 4.3   21, 5.3  20, 5.4   13, 4.4  

50   69, 1.2   46, 1.5   40, 2.2   33, 2.5   28, 2.7   26, 3.1   24, 3.5   22, 4.0   19, 4.8   18, 4.7   13, 4.4  

60   59, 1.0   43, 1.4   35, 1.9   30, 2.3   25, 2.4   23, 2.7   20, 3.0   18, 3.4   15, 3.9   15, 4.1   12, 3.9  

70   52, 0.9   42, 1.3   32, 1.8   27, 2.0   22, 2.1   20, 2.3   16, 2.4   15, 2.8   13, 3.3   13, 3.5   10, 3.4  

80   48, 0.8   35, 1.2   29, 1.6   24, 1.8   19, 1.8   16, 1.9   13, 2.0   14, 2.5   11, 2.8   11, 3.0   9, 2.9  

90   45, 0.8   28, 1.0   24, 1.3   22, 1.6   16, 1.5   14, 1.6   11, 1.5   11, 2.0   9, 2.2   9, 2.4   9, 2.9  

In the next results sections, the simulated data were employed to examine the effect of the choice of 𝜌 on 

the estimation accuracy; namely, using a constant 𝜌 versus using the actual 𝜌 that could be obtained if a 

single loop detector was installed. 

3.5.2.2. Connected Vehicle Impact on KF Estimator Performance using Fixed 𝝆 Values 

The proposed KF approach was evaluated using simulation data. Again a Monte Carlo simulation was run 

to create 100 samples from the full data set for each scenario. In this approach, we assume the ratio between 

the number of CVs and the number of total vehicles is constant. The estimation equations use a predefined 

fixed 𝜌 value (e.g., an average value from historical data). Table 3.10 presents the RRMSE and RMSE 

values using the simulation data. The RRMSE values produced reasonable values even with low LMPs, as 

shown in Table 3.10. For instance, the vehicle count estimates were off by 16% when the LMP equaled 

10%. On the other hand, our vehicle count estimates values were off by 9% for LMPs of 90%. Furthermore, 

the vehicle count approach produced RMSE values of up to 5.1 vehicles. Knowing that the tested link can 

accommodate up to 64 vehicles based on the jam density value, these RMSE values are low. Figure 3.6 

presents the estimation at different LMPs. As a result, the proposed approach addresses the research goal 

appropriately, producing reasonable error values. Vigos et al. considered their model robust with up to a 

27.5% RRMSE using at least three loop detector measurements (Vigos, Papageorgiou, and Wang 2008). It 

is obvious that using the predefined 𝜌 values results in errors. However, the KF is able to reduce these 

errors.  
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Table 3.10 RRMSE and RMSE values for various LMPs. 

LMP (%)      RRMSE (%)      RMSE (veh)   

10   16   5.1  

20   14   4.7  

30   13   4.4  

40   13   4.4  

50   13   4.4  

60   12   3.9  

70   10   3.4  

80   9   2.9  

90   9   2.9  

  
Figure 3.6 Actual and estimated vehicle counts using simulated data at different LMP scenarios: (a) 10%, 

(b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90%. 

3.5.2.3. Fusion Data Impact on KF Performance using Variable 𝝆 Values 

This section compares the two estimation approaches: The CV approach and the fusion approach. Again, 

different loop detector locations were tested for the fusion approach (entrance, middle, and exit) to measure 

the actual 𝜌 values. The variation in the RRMSE considering a stationary sensor (e.g., loop detector) is 

shown in Table 3.11 for different traffic demand levels (v/c ratio of 0.2, 0.5, and 1.1). Based on the RRMSE 

values, in some scenarios, installing a loop detector in the middle of the tested link would slightly improve 

the model’s accuracy by up to 8%; however, installing a loop detector may not be cost-effective. In 

conclusion, we recommend using a fixed 𝜌 value that can be estimated from historic data rather than the 

actual 𝜌.  
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Table 3.11 RRMSE values using one loop detector in different locations (entrance, middle, and exit). 

LMP 

(%) 

V/C = 0.2 V/C = 0.5 V/C = 1.1 

CV 

Approach  

Fusion Approach  CV 

Approach  

Fusion Approach  CV 

Approach  

Fusion Approach  

Entrance Middle Exit Entrance Middle Exit Entrance Middle Exit 

10 59 55 51 53 36 35 34 37 16 15 14 15 

20 58 54 51 53 34 33 33 34 14 15 15 15 

30 55 53 51 53 33 32 32 33 13 14 14 14 

40 55 49 50 51 30 30 30 30 13 15 15 16 

50 46 47 46 48 28 27 27 28 13 14 13 14 

60 43 43 43 43 25 25 25 25 12 12 12 12 

70 42 39 39 40 22 21 21 22 10 10 10 11 

80 35 34 34 36 19 19 20 19 9 8 8 9 

90 28 27 27 28 16 16 16 16 9 9 9 9 

3.6. Summary and Conclusions 

This research proposed a novel approach for estimating the number of vehicles on a signalized link using 

CV data only. The proposed estimation approach uses a variable estimation interval that ensures a 

predefined number of CVs are observed in each estimation interval. The estimation equations use the linear 

KF technique. The state-space equation is based on the conservation equation, while the travel time 

measurements together with the hydrodynamic equation are used to construct the measurement equation. 

Two estimation approaches were presented: (a) using only the CV data to estimate the vehicle counts; this 

approach uses a predefined LMP value (obtained from historical data) and (b) using a single loop detector 

located somewhere near the middle of the section to estimate the actual LMP values. The KF estimation 

accuracy was evaluated using both empirical data (collected in downtown Blacksburg, Virginia) and 

simulated data. The work done for this chapter demonstrates the importance of having a variable estimation 

interval and its benefits on the estimation accuracy, especially when dealing with low LMPs. In computing 

the estimation interval, the algorithm first needs a certain sample size (𝑛) to be defined. The study also 

investigated the sensitivity of the KF to the link length and traffic demand level, showing that the KF’s 

relative accuracy increases as the link length increases given that the number of vehicles increases. The 

study also examined different demand levels (v/c ratios) in order to evaluate the KF’s efficiency, with 

results showing that dealing with high traffic demand levels improved the estimation approach. In both 

estimation approaches, the results show that the estimation error increases as the LMP decreases. In some 

scenarios, the second approach (real-time estimated LMP) produces smaller errors since the actual LMP 

values can be observed. However, use of the second approach is not recommended, as it adds only slight 

improvements to the estimation outcomes with the additional cost associated with installing a loop detector, 

which may be cost prohibitive, especially in large urban areas.
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Chapter 4. Development of a Particle Filter Approach 

4.1. Introduction 

Real-time traffic estimation has received increased attention with the introduction of advanced applications 

and technologies such as ITSs. Adaptive traffic signal controllers require real-time traffic state estimation 

to improve intersection performance, as real-time estimation plays a major role in capturing variations in 

traffic behavior (e.g., nonrecurrent changes). As inputs to traffic signal controllers, traffic state variables 

(e.g., travel time and traffic density) assist with green time allocation and help to enhance intersection 

performance by reducing traffic delays, vehicle emissions, and fuel consumption (Kohavi 1995). Several 

estimation techniques have been developed to estimate traffic state variables (Vigos, Papageorgiou, and 

Wang 2008; Aljamal, Abdelghaffar, and Rakha 2020b, 2019a; Mihaylova et al. 2012; Pan et al. 2013). In 

some previous studies, the traffic state system has been treated as a linear system (Vigos, Papageorgiou, 

and Wang 2008; Beucher, Blosseville, and Lenoir 1988; Aljamal, Abdelghaffar, and Rakha 2020b). Other 

studies have considered the system as nonlinear (Chen and Rakha 2014; Wang and Papageorgiou 2005; 

Mihaylova et al. 2012). For linear system models, a KF has been widely deployed to produce accurate 

estimates (Anand, Vanajakshi, and Subramanian 2011; Vigos, Papageorgiou, and Wang 2008; Aljamal, 

Abdelghaffar, and Rakha 2019a) due to its simplicity and applicability in the field. The KF assumes linear 

system transitions with a Gaussian distribution for the probability density function (PDF) of the system and 

measurement noise. For nonlinear system models, an extended KF (EKF) has been utilized in estimation 

(Wang and Papageorgiou 2005; Abdelghaffar, Woolsey, and Rakha 2017). The EKF also assumes that the 

PDF distribution is Gaussian. The EKF is derived by linearizing the system using a Taylor series expansion 

by calculating the Jacobian expression. However, it was found that use of the EKF approach is only valid 

if the system is near linearity during the updating time (Julier and Uhlmann 1997), and thus large errors 

may result from linearization. In addition, the task of deriving the Jacobian matrices may cause 

implementation difficulties (Zhai and Yeary 2004). A more robust nonlinear approach is a particle filter 

(PF), which has been frequently employed in the literature to handle nonlinear dynamic problems 

(Mihaylova et al. 2012; Wright and Horowitz 2016; Chen and Rakha 2014). The PF approach is a Monte 

Carlo sequential solution that deals with nonlinear system transitions without the assumption of the PDF 

noise distribution (Liu and Chen 1998; Ristic, Arulampalam, and Gordon 2003). In this chapter, a PF 

approach is developed to estimate the traffic stream density along signalized intersection approaches using 

only CV data. Moreover, the chapter compares the performance of the PF to the KF and adaptive KF (AKF) 

approaches. 

Traffic density is defined as the number of vehicles per unit length on a specific roadway segment (Roess, 

Prassas, and McShane 2011). Estimating the traffic stream density is critical in the development of effective 

traffic controllers (Abdelghaffar et al. 2020). For instance in the case of freeways, identifying bottleneck 

locations in the early stages is critical in developing congestion mitigation strategies that include ramp 

metering, variable speed limits, and traffic routing. For signalized segments, the traffic density measures 

are crucial for either traffic signal performance (Cronje 1983; Balke, Charara, and Parker 2005; Calle-

Laguna, Du, and Rakha 2019) or traffic signal optimization (Gazis and Liu 2003; Roess, Prassas, and 

McShane 2011). Hence, traffic density measures must be precisely estimated to represent traffic demands 

at each signalized intersection approach. Once accurate measurements are obtained, efficient adaptive 

traffic signal controllers can be developed. However, determining traffic density is not a trivial task and 

cannot be directly measured in the field since it is a spatial measurement. Consequently, traffic stream 

density is typically based on estimations. Previous research has utilized different data sources, such as 
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stationary sensors (e.g., loop detectors), fused data (combining two distinct data sources), and CV data to 

estimate traffic stream density. Traffic density estimates can be measured using video detection systems, 

but this is difficult due to the high cost of the infrastructure and the limited visibility of roadway segments 

(Vigos, Papageorgiou, and Wang 2008). Time-occupancy measurements from loop detectors are used as 

an alternative data source to estimate the traffic density (Cheung et al. 2005). However, time-occupancy 

measurements only represent the temporal density estimates around the location of the detector. A recent 

study introduced a relationship between time-occupancy and space-occupancy to estimate traffic density 

by dividing the link into small segments and installing detectors on all of the small segments (Qian, Lee, 

and Chung 2012), but the installation cost is high. A more common way of estimating the traffic density is 

the use of the traffic flow continuity equation (input-output approach), which considers two traffic counting 

stations, one at the entrance and the other at the end of the link (Gerlough and Huber 1976). Vigos et al. 

(Vigos, Papageorgiou, and Wang 2008) proposed a robust linear KF approach with at least three loop 

detectors to estimate the traffic density along signalized approaches. However, the implementation cost is 

high. Another study (Kurkjian et al. 1980) employed two conventional loop detectors to estimate the traffic 

density using the flow continuity equation. The two loop detectors provide the estimation model with traffic 

flow and occupancy data. Bhouri et al. (Bhouri et al. 1989) proposed a KF approach to estimate the traffic 

stream density along a freeway segment using both loop detectors and a recorded film (Bhouri et al. 1989). 

One commonality about the use of fixed sensors is that they are subject to detection failures and thus always 

produce error in their data (Lee, Hernandez, and Stoschek 2012; Mimbela and Klein 2000). 

Recent research has fused different data sources to estimate the traffic stream density along certain roadway 

sections, increasing the accuracy of the estimate over using just one data source (Anand, Vanajakshi, and 

Subramanian 2011). Many works have employed the KF approach (Anand, Vanajakshi, and Subramanian 

2011; Anand, Ramadurai, and Vanajakshi 2014; van Erp, Knoop, and Hoogendoorn 2017). For instance, 

traffic flow data at the entrance and the exit of the roadway section observed from stationary sensors 

together with CV data were used to estimate the traffic density (Anand, Vanajakshi, and Subramanian 

2011). The CV data provided travel-time measurements to correct the prior estimate from the state equation. 

Another study has utilized fused loop and CV measurements to estimate the traffic density in a freeway 

section (Wright and Horowitz 2016). In that study, the authors derived the estimation model using the PF 

estimation approach, considering two sources of measurements: (1) loop detectors, and (2) fusing loop 

detectors and CVs. They obtained a 30% reduction in the mean absolute percentage error from the fused 

measurements compared to the measurements from loop detectors, demonstrating that more data sources 

produce more-accurate outcomes. However, the use of different data sources requires more computational 

cost in both time and memory as the data include both trivial (data that are not needed) and nontrivial (data 

that are needed) information. 

Limited studies have used CV data as the only source of inputs to estimate the traffic stream density 

(Aljamal, Abdelghaffar, and Rakha 2020b, 2019a, 2019b). These studies developed the linear KF estimator 

approach. The CV data used were the number of CVs at the entry and at the exit of the tested roadway 

section, in addition to the travel time experienced for the CVs to traverse the tested section. Moreover, 

Aljamal et al. (Aljamal, Abdelghaffar, and Rakha 2020b) demonstrated that treating the estimation interval 

time as a variable instead of a fixed value is mandatory when dealing with only CV data, as the variable 

approach always ensures that sufficient information is gathered from the CVs in every estimation interval. 

This approach enhances the accuracy of the estimation, especially for the scenarios with a low CV LMP. 
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The estimation time interval for this chapter is therefore defined as the time when an exact number of CVs 

(i.e., 5 vehicles) reach the end of the tested link. 

Several researchers have employed the PF approach to improve traffic stream estimates for different 

transportation applications, including traffic flow, travel time, and traffic speed. In one study, magnetic 

loop detectors were placed at the boundaries of the tested freeway section to estimate the traffic flow, and 

a PF estimation approach was developed using traffic flow and speed measurements (Mihaylova and Boel 

2004). In another study, Mihaylova et al. (Mihaylova, Boel, and Hegyi 2007) developed two nonlinear 

approaches, an unscented KF and a PF, to produce real-time traffic flow estimates in a freeway network 

using data from stationary sensors. They found that the PF approach outperformed the unscented KF. Chen 

et al. (Chen, Rakha, and Sadek 2011) proposed a time series speed equation to estimate traffic speed. They 

claimed that the traffic system is nonlinear and thus presented two nonlinear approaches, a PF and an 

ensemble KF, using available speed measurements from loop detectors. They found that the PF approach 

is more accurate than the ensemble KF. Another study developed a PF estimation approach for travel-time 

predictions using real-time and historical data (Chen and Rakha 2014). They used the historical data to 

generate particles as opposed to using a state-transition model. In addition, a comparison between the PF, 

KF, and k-nearest neighbor estimators found that the PF is the most accurate approach. CV data were 

employed to estimate the traffic speed and flow using the PF approach (Cheng, Qiu, and Ran 2006). In that 

study, each link in the network was assumed to have base stations to retrieve and transfer the data. Results 

found that other data sources (e.g., loop detectors) should be incorporated with CV data to enhance the 

estimation performance. However, our recent study developed a KF approach, showing that the use of CV 

data alone is sufficient to obtain accurate results (Aljamal, Abdelghaffar, and Rakha 2020b). 

In summary, the existing literature shows that the PF has been widely used to address nonlinear systems 

and has been proven to outperform other nonlinear estimation techniques; however, to our best of 

knowledge in the application of traffic stream density estimation, only a few studies have applied the PF 

approach using data from stationary sensors and fusing data from different sources. In addition, no 

comparison between the PF and the linear KF has been reported. Therefore, the PF was adopted in this 

chapter. The primary objective of this chapter is to develop a nonlinear PF estimation approach to estimate 

the traffic stream density based solely on CV data on signalized approaches. Subsequently, we compare the 

PF approach to linear estimation approaches—namely, KF and AKF—to identify the best approach for the 

application of the traffic density estimation, given that no comparison has been reported in the literature 

between these filtering techniques. Consequently, this research will recommend a specific approach to 

estimate the traffic stream density. The proposed three approaches are employed to estimate the vehicle 

counts based solely on CV data. In addition, this chapter also investigates the sensitivity of the proposed 

estimation approaches to several factors, such as the LMP rate of the CVs, the initial conditions, and the 

number of PF particles. 

The chapter is organized as follows: Section 4.2 describes the problem formulation and the estimation 

approaches. Section 4.3 discusses the findings from applying the estimation approaches. Section 4.4 

includes the conclusions of the chapter and the proposed future work. 
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4.2. Problem Formulation and Estimation Approaches  

First, Section 4.2.1 formulates the research problem using a state-space model. Then, three different 

estimation approaches are described: the PF (Section 4.2.2.1), the KF (Section 4.2.2.2) and the AKF 

(Section 4.2.2.3). 

4.2.1. State-Space Model 

The state-space model is represented by a state equation and a measurement equation. The state equation 

describes how the system behaves and provides a priori knowledge of the estimation. The measurement 

equation is used to help correct and improve the prior estimation. In this chapter, the goal is to estimate the 

number of vehicles on signalized links using only CV data, as depicted in Figure 4.1, where CVs are the 

vehicles that have the connection icon (e.g., the first vehicle on the left). The only information that is needed 

in practice is (1) the traffic flow of CVs observed at the tested link’s entrance and exit, and (2) the travel 

time of each CV. V2I communication can provide this information to the traffic signal controller. 

 
Figure 4.1 Tested link section includes CVs and non-CVs. 

The model is formulated using the derived state-space equations in (Aljamal, Abdelghaffar, and Rakha 

2020b). The state equation, Equation (60), is based on the continuity equation of traffic flow, whereas the 

measurement equation, Equation (61), is based on the traffic flow hydrodynamic relationship, based on 

measurements of the average travel time of the CVs. In Equation (60), the number of vehicles is computed 

by continuously adding the difference of the number of vehicles that enter and exit the tested section to the 

cumulative number of vehicles traveling along the section previously computed.  

 𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) + 𝑢(𝑡) (60) 

 𝑇𝑇(𝑡) = 𝐻(𝑡) × 𝑁(𝑡) (61) 

where 𝑁(𝑡) is the number of vehicles traversing the link at time 𝑡, 𝑁(𝑡 − Δ𝑡) is the number of vehicles 

traversing the link in the preceding time interval, and 𝑢(𝑡) is the system inputs, as described in Equation 

(62).  

 𝑢(𝑡) =
Δ𝑡 [𝑞𝑖𝑛(𝑡)−𝑞𝑜𝑢𝑡(𝑡)]

max(𝜌𝑎𝑐𝑡𝑢𝑎𝑙,𝜌𝑚𝑖𝑛)
 (62) 

where 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 represent the flow of CVs entering and exiting the link, respectively, during Δ𝑡. 𝜌 is 

the CVs’ LMP, defined as the ratio of CV count to total vehicle count. In the state equation, the 𝜌 variable 

is set to be the maximum number of the actual 𝜌 (𝜌𝑎𝑐𝑡𝑢𝑎𝑙) and a predefined minimum value of 𝜌 (𝜌𝑚𝑖𝑛). 

𝜌𝑎𝑐𝑡𝑢𝑎𝑙 can be obtained from historical data. 𝜌𝑚𝑖𝑛 is introduced to avoid producing large errors in the state 

equation since a single 𝜌 value is used to approximate the two 𝜌 values (upstream and downstream of the 

tested link) (Aljamal, Abdelghaffar, and Rakha 2020b). In this chapter, 𝜌𝑚𝑖𝑛 is set to be equal to 0.5; more 

details about the system state representation can be found in (Aljamal, Abdelghaffar, and Rakha 2020b). It 
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should be noted that the 𝜌 variable is the main noise source in the system, and thus there is an urgent need 

to develop the measurement equation to fix these errors. In Equation (61), 𝑇𝑇 is the average vehicle travel 

time, 𝐻(𝑡) is a vector that transforms the vehicle counts to travel times. 𝐻(𝑡) is derived from the 

hydrodynamic relationship between the macroscopic traffic parameters (flow, density, and space-mean 

speed), as presented in Equation (63).  

 𝐻(𝑡) =
1

�̅�(𝑡)
=

2 ×𝜌𝑎𝑐𝑡𝑢𝑎𝑙

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
 (63) 

4.2.2. Estimation Approaches 

As mentioned earlier, the KF and the AKF are considered linear estimators that can efficiently handle linear 

state-space systems. However, in the proposed state-space equations, we suspect some nonlinearity coming 

from the 𝜌 variable, which raises the question, would a nonlinear filter improve the estimation performance? 

For this purpose, this chapter develops a nonlinear PF approach to estimate the vehicle counts along the 

signalized link. This section presents the formulation of the three approaches used to estimate the vehicle 

counts using only CV data along signalized approaches. The three techniques are the proposed PF, the KF 

(Aljamal, Abdelghaffar, and Rakha 2020b), and the AKF (Aljamal, Abdelghaffar, and Rakha 2019a). 

4.2.2.1. The PF Approach 

The PF approach is used to solve nonlinear state-space systems with no form restrictions on the initial state 

and noise distributions. For instance, the PF can deal with any arbitrary PDF distribution (Liu and Chen 

1998). The PF approach is used to estimate the posterior PDF of the state vehicle count variable (𝑁) given 

some measurements of CV travel times (𝑇𝑇) by assigning 𝑘 number of particles (samples). Each particle 

has a certain relative weight (𝑤). When a new measurement is received, the particles’ locations and weights 

are updated. It should be noted that the particles with low relative weight values are replaced with new 

particles (resampling) so that the system keeps only the important particles. The estimates are then 

calculated using the average value of the remaining particles. The following steps are used to implement 

the proposed PF approach:  

1. Initialization: 𝑡 = 0,   where 𝑡 is the time interval.    

        (a) �̂�+(0), 𝑅, 𝑉, and 𝑙,  

where �̂�+(0) is the initial vehicle count estimate; 𝑅 is the measurement’s covariance error; and 𝑉 

is the variance of the initial vehicle count estimate, which is used to randomly generate the initial 

particles’ locations around �̂�+(0).  

        (b) Generate 𝑙 particles’ locations randomly, from 1 to 𝐿, from the initial prior Gaussian distribution 

𝑃(𝑁0).  

 𝑁𝑙(0) ∼ 𝑃(𝑁0) (64) 

2. For 𝑡 = 1: 𝑇.    

        (a) Update the locations (𝑁𝑙(𝑡)), measurements (𝑇𝑇𝑙(𝑡)), and weights (𝑤𝑙(𝑡)) of the particles.  

 𝑁𝑙(𝑡) = 𝑁𝑙(𝑡 − Δ𝑡) + 𝑢(𝑡) (65) 
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 𝑇𝑇𝑙(𝑡) =   𝐻(𝑡) × 𝑁𝑙(𝑡) (66) 

 𝑤𝑙(𝑡) =
1

√2𝜋𝑅
 𝑒−(𝑇𝑇−𝑇𝑇𝑙(𝑡))

2
/2𝑅 (67) 

where 𝑇𝑇 is the observed measurement from the CVs. The weights are then normalized using the following 

equation, �̂�𝑙(𝑡) = 𝑤𝑙(𝑡)/ ∑𝐿
𝑙=1 𝑤𝑙(𝑡). 

        (b) Replace the low-weighted particles with new particles (resampling (Liu and Chen 1998)). After a 

few iterations in the PF process, the weight will focus on a few particles only and most particles will have 

insignificant weights, resulting in sample degeneracy (Li, Sattar, and Sun 2012). The resampling process 

is therefore used to tackle the degeneracy problem. It should be noted that the highly weighted particles 

are used to compute the PF posterior estimate. 

        (c) Compute the PF posterior estimate: The PF posterior estimate is computed as the average value 

of the remaining particles (particles with high weights), as shown in Equation (68).  

 �̂�+(𝑡) =
1

𝐿
∑𝐿

𝑙=1 𝑁𝑙(𝑡) (68) 

        (d) Next time step (𝑡 + Δ𝑡): When 5 new CVs traverse the link, return to step 2a.  

4.2.2.2. The KF Approach 

The KF approach is a linear quadratic estimator. It has been proven to be the best for estimating linear 

systems with Gaussian noise (Maybeck 1990). The KF estimation approach can be solved using the 

following steps: 

1. Initialization: 𝑡 = 0;   where 𝑡 is the time interval.    

        (a) �̂�+(0), 𝑅, and �̂�+(0), 

where �̂�+(0) is the initial posterior error covariance estimate for the state system.  

2. For 𝑡 = 1: 𝑇.    

        (a) Prior estimates:  

 �̂�−(𝑡) = �̂�+(𝑡 − Δ𝑡) + 𝑢(𝑡) (69) 

 �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�−(𝑡) (70) 

 �̂�−(𝑡) =   �̂�+(𝑡 − Δ𝑡) (71) 

where �̂�− is an estimate of a priori vehicle count, �̂�𝑇 is the estimated average travel time, and �̂�− 

is the a priori covariance estimate for the state system. 

        (b) Correction: The correction uses the prior estimate and the new measurement (i.e., the CV average 

travel time) to compute the Kalman gain (𝐺).  

 𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅]−1 (72) 
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        (c) Posterior state estimates:  

 �̂�+(𝑡) = �̂�−(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) −   �̂�𝑇  (𝑡)] (73) 

 �̂�+(𝑡) = �̂�−(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)] (74) 

where �̂�+ is the posterior vehicle count estimate, and �̂�+ is the posterior error covariance estimate. 

        (d) Next time step (𝑡 + Δ𝑡): When five new CVs traverse the link, return to step 2a.  

4.2.2.3. The AKF Approach 

The AKF approach is presented to estimate the total number of vehicles, using real-time noise error 

estimates in the state and measurement systems (i.e., mean and variance values). It should be noted that the 

KF and the AKF approaches use the same equations, but the AKF approach dynamically estimates the noise 

statistical parameters every estimation step. The vehicle count estimates can be obtained using the following 

steps:   

1. Initialization: 𝑡 = 0;   where 𝑡 is the time interval.    

        (a) �̂�+(0), 𝑚(0), and �̂�+(0), 

where 𝑚(0) is the mean of the noise for the state system.  

2. For 𝑡 = 1: 𝑇    

        (a) Prior estimates:  

 �̂�−(𝑡) = �̂�+(𝑡 − Δ𝑡) + 𝑢(𝑡) + 𝑚(𝑡 − Δ𝑡) (75) 

 �̂�−(𝑡) =   �̂�+(𝑡 − Δ𝑡) + 𝑀(𝑡 − Δ𝑡) (76) 

        (b) Estimation of noise statistics for the measurement system:  

 �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�−(𝑡) (77) 

 𝑟 =
1

𝑛
∑𝑛

𝑡=1  [𝑇𝑇(𝑡) − �̂�𝑇(𝑡)] (78) 

 𝑅 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑟(𝑡) − 𝑟). (𝑟(𝑡) − 𝑟)𝑇 − (
𝑛−1

𝑛
)𝐻(𝑡)�̂�−(𝑡)𝐻𝑇(𝑡)] (79) 

where 𝑟 and 𝑅 are the mean and covariance of the measurement noise, respectively, and 𝑛 is the 

number of state noise samples. 

        (c) Correction:  

 𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅(𝑡)]−1 (80) 

        (d) Posterior state estimates:  

 �̂�+(𝑡) = �̂�−(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) − �̂�𝑇(𝑡) − 𝑟(𝑡)] (81) 
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 �̂�+(𝑡) = �̂�−(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)] (82) 

        (e) Estimation of noise statistics for the state system:  

 𝑚 =
1

𝑛
∑𝑛

𝑡=1   [�̂�+(𝑡) − �̂�+(𝑡 − Δ𝑡) − 𝑢(𝑡) + 𝑚(𝑡 − Δ𝑡)] (83) 

 𝑀 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑚(𝑡) − 𝑚). (𝑚(𝑡) − 𝑚)𝑇 − (
𝑛−1

𝑛
)�̂�+(𝑡 − Δ𝑡) − �̂�+(𝑡)] (84) 

 where 𝑚 and 𝑀 are the mean and covariance of the state noise, respectively.  

        (f) Next time step (𝑡 + Δ𝑡): When five new CVs traverse the link, return to step 2a.  

4.3. Results and Discussion 

This section evaluates and compares the three estimation approaches. The simulated data were generated 

for a signalized link under an oversaturation condition in which the traffic demand exceeds the link capacity. 

The free-flow speed is 40 km/h; the saturation flow rate is 1,800 veh/h/lane, resulting in a traffic capacity 

of 855 veh/h given the cycle length and traffic signal’s green times; the speed at capacity is 32 km/h; and 

the jam density is 160 veh/km/lane. The traffic signal is operated at a cycle length of 120 s and a phase 

split of 50:50. The amber and all-red intervals are 3 s. To test the accuracy of the estimation approaches, 

the INTEGRATION microscopic traffic assignment and simulation software was used. The RRMSE, 

presented in Equation (85), was used to evaluate the proposed estimation approaches. 

 𝑅𝑅𝑀𝑆𝐸(%)  =  100 √𝑆 ∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/ ∑𝑆

𝑠=1 𝑁(𝑆) (85) 

where �̂�
+

(𝑠) represents the estimated count of vehicles, 𝑁(𝑠) represents the actual count of vehicles, and 

𝑆 is the overall number of estimations. 

4.3.1. Performance of Estimation Approaches 

The simulations were conducted with the same predefined initial conditions to obtain a fair comparison. 

The initial conditions are described in Table 4.1. It should be noted that each estimator requires specific 

initial variables. For instance, �̂�
+

(0), 𝑅, and �̂�
+

(0) are required for the KF approach. For all estimation 

approaches, the first estimate begins with an erroneous initial estimate of vehicle count (�̂�
+

(0) = 5 veh), 

whereas the actual vehicle count is zero (Vigos, Papageorgiou, and Wang 2008). 

Table 4.1 Initial conditions for the KF, AKF, and PF approaches. 

 Initial Conditions         KF         AKF         PF     

�̂�+(0) (veh)   5   5   5  

R (sec 2)   20   –   20  

V (veh 2)   –   –   5  

L (# of part.)   –   –   200  

P̂+(0) (veh 2)   5   5   –  

m (veh)   –   5  –  

The three estimation approaches were evaluated using different CV LMPs, including 1%, 3%, 5%, 8%, 

10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each LMP scenario, 100 random 

samples from the full data set were created using a Monte Carlo simulation. Table 4.2 presents the RRMSE 
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values of the KF, AKF, and the PF approaches. The table indicates that estimation errors decrease with 

increasing LMP for all estimation approaches. The table also demonstrates that the KF outperforms the 

AKF and the PF approaches. For instance, for the scenario of 1% LMP, the vehicle count estimates were 

off by 30%, 48%, and 64% using KF, AKF and PF, respectively. 

Table 4.2 RRMSE of KF, AKF, and PF approaches for different LMPs. 

LMP (%) 
 RRMSE (%) 

     KF          AKF           PF      

1  30   48   64  

3  25   34   60  

5  23   32   56  

8  23   28  52  

10  19   24   48  

15  19   24   42  

20   18   23   40  

30   18   19   30  

40   18   18   22  

50   18   17   18  

60   14   16   15  

70   12   17   12  

80   9   17   9  

90   6   17   7  

The PF approach produces high RRMSE values at low LMPs (LMP < 40%), while for the high-LMP 

scenarios, the PF produces RRMSE values close to the values obtained from the KF. Moreover, the AKF 

approach produces high errors, especially at very low LMPs (LMP < 10%) and high LMPs (LMP >=

70%). This demonstrates that the real-time estimates of the statistical noise values obtained from the AKF 

are not needed for the high-LMP scenarios, and the user may proceed with predefined statistical values due 

to low errors in the vehicle count estimates (low error in the 𝜌 value). It was found that the high RRMSE 

error values produced from the AKF and PF approaches are mainly caused from assigning an inappropriate 

initial vehicle count estimate, as discussed in the next section. 

Figure 4.2 presents the KF, AKF, and PF estimation outcomes with regard to the actual values at different 

LMPs (i.e., 10% to 90% with an increase of 10% at each step). In each subfigure, three plots are generated 

to display the estimation approaches’ outcomes with regard to the actual values; the top one displays the 

PF outcomes, the middle one presents the KF outcomes, and the bottom one displays the AKF outcomes. 

The actual curve is represented by the dotted curve. In conclusion, the KF approach is recommended, as it 

produces the most accurate estimates in addition to its simplicity and applicability in the field. The next 

section will discuss the impact of the initial conditions on the performance of the various estimation 

approaches. 
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Figure 4.2 Actual and estimated vehicle counts at different LMP scenarios: (a) 10%, (b) 20%, (c) 30%, 

(d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90%. 

4.3.2. Impact of Initial Conditions 

This section examines the effect of the choice of the initial conditions on the performance of the estimators, 

such as the initial vehicle count estimate �̂�
+

(0) and the 𝑙 number of particles in the PF approach. First, 

different �̂�
+

(0) values were tested, from 0 to 25 at increments of 5, at different LMP scenarios, as 

presented in Table 4.3 and Table 4.4. Table 4.3 presents the RRMSE values when the �̂�
+

(0) is set to equal 

0, 5, and 10 vehicles. Table 4.4 displays the RRMSE for the �̂�
+

(0) values of 15, 20, and 25 vehicles. The 

tables demonstrate that the RRMSE values are sensitive to the changes of the �̂�
+

(0) values. The tables also 

show that the PF is the most sensitive estimator to �̂�
+

(0) for all LMP scenarios. For instance, for the 

scenario of 1% LMP, the RRMSE is 81% when the simulation starts with 0 veh, while the RRMSE is 17% 

when �̂�
+

(0) is equal to 25. Therefore, starting the simulations with an appropriate initial estimate close to 

the truth value significantly improves the estimation accuracy since this helps the PF to quickly converge. 

In addition, the AKF seems to be sensitive to the �̂�
+

(0) with low LMP scenarios (LMP <= 10%), while 
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the choice of �̂�
+

(0) has a slight effect on the estimation accuracy for the scenarios with medium and high 

LMPs. For instance, for the scenario of 1% LMP, the RRMSE is 71% when the simulation starts with 0 

veh, while the RRMSE is 21% when �̂�
+

(0) is equal to 25. Lastly, the tables show that the KF is the least-

sensitive estimator to the �̂�
+

(0) value. Figure 4.3 summarizes the RRMSE values for nine LMP scenarios 

presented in Table 4.3 and Table 4.4. 

Table 4.3 RRMSE values for the KF, AKF, and PF approaches using different initial vehicle count 

estimates (i.e., 0, 5, and 10) for different LMPs. 

LMP (%) 
 �̂�+(𝟎) = 0  �̂�+(𝟎) = 5  �̂�+(𝟎) = 10 

   KF      AKF       PF     KF      AKF       PF     KF      AKF       PF    

1   34   71   81   30   48   64   27   36   51  

3   28   49   78   25   34   60   23   26   47  

5   26   45   73  23   32   56   23   27   44  

8   24   33   69   23   28   52   23   27   41  

10   19   33   62   19   24   48   20   24   37  

15   21   29   55   19   24   42   20   23   37  

20   20   24   47   18   23   40   19   23   35  

30   19   21   34   18   19   30   19   19   27  

40   18   20   24   18   18   22   19   18   19  

50   19   17   18   18   17   18   17   17   22  

60   14   17   14   14   16   15   15   16   19  

70   12   18   12   12   17   12   12   17   17  

80   9   18   9   9   17   9   9   17   15  

90   6   17   6   6   17   7   7   17   14  

Table 4.4 RRMSE values for the KF, AKF, and PF approaches using different initial vehicle count 

estimates (i.e., 15, 20, and 25) for different LMPs. 

LMP 

(%) 

 �̂�+(𝟎) = 15  �̂�+(𝟎) = 20  �̂�+(𝟎) = 25 

   KF      AKF      PF     KF      AKF     PF      KF      AKF      PF   

1  23   32   36   20   23   24   19   21   17  

3   22   26   33   20   25   24   20   24   19  

5   21   25   31  20   23   26   19   24   20  

8   21   27   33   22   26   26   21   26   23  

10   20   24   30   20   24   27   19   26   22  

15   19   23   30   19   24   26   19   23   18  

20   19   23   30   19   23   30   19   23   16  

30   19   19   21   19   19   21   19   19   26  

40   19   18   20   19   18   20   19   18   44  

50   18   17   33   18   17   47   18   17   33  

60   15   16   32   15   16   32   15   16   32  

70   12   17   30   12   17   30   12   17   30  

80   9   17   30   9   17   30   9   17   30  

90   7   17   29   7   17   44   7   17   29  
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Figure 4.3 RRMSE values using various initial vehicle count estimates at different LMP scenarios: (a) 

10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90%. 

This chapter also examined the choice of the number of particles, 𝑙, on the PF performance (i.e., 𝑙 = 10, 

100, 200, 1,000, and 2,000), as presented in Table 4.5. The findings show that the estimation accuracy 

increases as the number of particles increases, especially at low LMPs. However, increasing the number of 

particles is associated with additional computational time. The PF was implemented in MATLAB R2019a 

on a Dell PC with 8.0 GB RAM. The computation time ranges between 0.2 and 1.6 s, with 10 particles for 

various LMPs; 1.1 and 3.0 s with 100 particles; 1.3 and 6.8 s with 200 particles; 1.3 and 73 s with 1,000 

particles; and 4 and 256 s with 2,000 particles. The results in Table 4.5 show that the use of 1,000 and 

2,000 particles slightly reduces the RRMSE values compared to the use of 200 particles; however, this 

comes at a very high computational cost. Therefore, the use of 200 particles is recommended in the PF 

approach. 
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Table 4.5 RRMSE values using different number of particles in the PF for different LMPs. 

LMP (%) 
 RRMSE (%) 

     l = 10          l = 100           l = 200          l = 1000          l = 2000      

1  72   66   64   61   59  

3  69   62   60   57   56  

5  66   59   56   53   52  

8  60   54   52   48   47  

10  56   50   48   46   44  

15  48   44   42   40   40  

20  44   41   40   38   36  

30  34   30   30   30   30  

40  22   22   22   22   22  

50  19   18   18   18   17  

60  16   15   15   14   14  

70  13   12   12   12   11  

80  11   9   9   9   9  

90  9   7   7   6   6  

 

4.4. Summary and Conclusions 

This chapter developed a nonlinear PF estimation approach to estimate the number of vehicles approaching 

a traffic signal based solely on CV data, with the aim of improving the estimation accuracy of linear state-

of-the-art estimation approaches. This chapter introduced two linear approaches, KF and AKF, as 

benchmarks, to be compared with the proposed nonlinear PF approach. The results show that the KF 

produces the least error and accurately estimates the vehicle counts compared with the AKF and PF 

approaches. Consequently, to address the research problem appropriately, it is recommended to deploy the 

linear KF approach rather than the more complex AKF and PF approaches because of its simplicity and 

high-performance accuracy. In addition, the chapter investigated the sensitivity of the developed 

approaches to different factors, including the LMP of CVs, the initial vehicle count estimates, and the 

number of particles used in the PF approach. The results indicate that the estimation errors decrease as the 

LMP increases. Furthermore, the chapter investigated the effect of the choice of the number of particles on 

the performance of the PF and showed that the PF estimation accuracy increases as the number of particles 

increases. However, this comes at the expense of significantly longer computational times. This can 

significantly impact the performance of the PF, requiring longer time to converge. The results demonstrate 

that the KF approach is the least sensitive to the initial vehicle count estimate, while the PF approach is the 

most sensitive to the initial vehicle count estimate and thus is the most suitable for the proposed application.  
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